
Medical Imaging Toolbox™
User's Guide

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Medical Imaging Toolbox™ User's Guide
© COPYRIGHT 2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2022 Online only New for Version 1.0 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started
1

Medical Imaging Toolbox Product Description . 1-2

Read, Process, and Write 3-D Medical Images . 1-3

Get Started with Medical Image Labeler . 1-10
Start New Labeling Session . 1-10
Load Image Data . 1-11
Create Label Definitions . 1-11
Label Image . 1-12
Export Labeling Results . 1-13
How Medical Image Labeler Manages Ground Truth Labels 1-14

Medical Image Coordinate Systems . 1-15
Patient Coordinate System . 1-15
Intrinsic Coordinate System . 1-16

Introduction to Medical Imaging . 1-18
Common Medical Imaging Modalities . 1-18
Typical Workflow for Medical Image Analysis . 1-20

Import, Export, and Spatial Referencing
2

Read, Process, and View Ultrasound Data . 2-2

Display and Volume Rendering
3

Visualize 3-D Medical Image Data Using Medical Image Labeler 3-2

Display 3-D Medical Image Data in Patient Coordinate System 3-8

Display Labeled Medical Image Volume in Patient Coordinates 3-12

Create STL Surface Model of Femur Bone for 3-D Printing 3-19

iii

Contents

Image Preprocessing and Augmentation
4

Medical Image Preprocessing . 4-2
Background Removal . 4-2
Denoising . 4-2
Resampling . 4-2
Registration . 4-3
Intensity Normalization . 4-3
Preprocessing in Advanced Workflows . 4-4

Medical Image Registration . 4-5
Scenarios for Medical Image Registration . 4-5
Functions for Medical Image Registration . 4-6

Register Multimodal Medical Image Volumes with Spatial Referencing
. 4-9

Medical Image Labeling
5

Label 2-D Ultrasound Series Using Medical Image Labeler 5-2

Label 3-D Medical Image Using Medical Image Labeler 5-10

Collaborate on Multi-Labeler Medical Image Labeling Projects 5-19
Create Label Definitions and Assign Data to Labelers (Project Manager)

. 5-20
Label Data and Publish Labels for Review (Labeler) 5-21
Inspect Labeled Images (Reviewer) . 5-23
Export Ground Truth Data and Send to Project Manager (Labeler) 5-23
Collect, Merge, and Create Training Data (Project Manager) 5-24

Medical Image Segmentation
6

Create Datastores for Medical Image Semantic Segmentation 6-2
Medical Image Ground Truth Data . 6-2
Datastores for Semantic Segmentation . 6-3

Convert Ultrasound Image Series into Training Data for 2-D Semantic
Segmentation Network . 6-5

Create Training Data for 3-D Medical Image Semantic Segmentation . . . 6-9

Segment Lungs from CT Scan Using Pretrained Neural Network 6-14

Brain MRI Segmentation Using Pretrained 3-D U-Net Network 6-24

iv Contents

Breast Tumor Segmentation from Ultrasound Using Deep Learning . . . 6-32

v

Getting Started

• “Medical Imaging Toolbox Product Description” on page 1-2
• “Read, Process, and Write 3-D Medical Images” on page 1-3
• “Get Started with Medical Image Labeler” on page 1-10
• “Medical Image Coordinate Systems” on page 1-15
• “Introduction to Medical Imaging” on page 1-18

1

Medical Imaging Toolbox Product Description
Visualize, register, segment, and label 2D and 3D medical images

Medical Imaging Toolbox provides apps, functions, and workflows for designing and testing
diagnostic imaging applications. You can perform 3D rendering and visualization, multimodal
registration, and segmentation and labeling of radiology images. The toolbox also lets you train
predefined deep learning networks (with Deep Learning Toolbox™).

You can import, preprocess, and analyze radiology images from various imaging modalities, including
projected X-ray imaging, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound
(US), and nuclear medicine (PET, SPECT). The Medical Image Labeler app lets you semi-automate 2D
and 3D labeling for use in AI workflows. You can perform multimodal registration of medical images,
including 2D images, 3D surfaces, and 3D volumes. The toolbox provides an integrated environment
for end-to-end computer-aided diagnosis and medical image analysis.

1 Getting Started

1-2

Read, Process, and Write 3-D Medical Images

This example shows how to import and display volumetric medical image data, apply a smoothing
filter to the image, and write the processed image to a new file. You can use the medicalVolume
object to import image data and spatial information about a 3-D medical image in one object. This
example also shows how you can use the properties and object functions of a medicalVolume object
to work with image volumes in the intrinsic and patient coordinate systems.

Download Image Volume Data

This example uses one chest CT volume saved as a directory of DICOM files. The volume is part of a
data set containing three CT scans. The size of the entire data set is approximately 81 MB. Download
the data set from the MathWorks® website, then unzip the folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeDICOMData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeDICOMData","LungCT01");

Read Image File

The medicalVolume object imports data from the DICOM, NIfTI, and NRRD medical image file
formats. DICOM volumes can be stored as a single file or as a directory containing individual files for
each 2-D slice. The medicalVolume object automatically detects the file format and extracts the
image data, spatial information, and modality from the file metadata. For this example, specify the
data source as the download directory of the chest CT scan.

medVol = medicalVolume(dataFolder)

medVol =
 medicalVolume with properties:

 Voxels: [512×512×88 int16]
 VolumeGeometry: [1×1 medicalref3d]
 SpatialUnits: "mm"
 Orientation: "transverse"
 VoxelSpacing: [0.7285 0.7285 2.5000]
 NormalVector: [0 0 1]
 NumCoronalSlices: 512
 NumSagittalSlices: 512
 NumTransverseSlices: 88
 PlaneMapping: ["sagittal" "coronal" "transverse"]
 Modality: "CT"
 WindowCenters: [88×1 double]
 WindowWidths: [88×1 double]

The Voxels property contains the image intensity values. If the file metadata specifies the rescale
intercept and slope, medicalVolume automatically rescales the voxel intensities to the specified
units. In this example, the CT intensity values are rescaled to Hounsfield units.

vol = medVol.Voxels;

The VolumeGeometry property contains a medicalref3d object that defines the spatial referencing
for the image volume, including the mapping between the intrinsic and patient coordinate systems.

 Read, Process, and Write 3-D Medical Images

1-3

The intrinsic coordinate system is defined by the rows, columns, and slices of the Voxels array, with
coordinates in voxel units. The patient coordinate system is defined relative to the anatomical axes of
the patient, with real-world units such as millimeters.

R = medVol.VolumeGeometry

R =
 medicalref3d with properties:

 VolumeSize: [512 512 88]
 Position: [88×3 double]
 VoxelDistances: {[88×3 double] [88×3 double] [88×3 double]}
 PatientCoordinateSystem: "LPS+"
 PixelSpacing: [88×2 double]
 IsAffine: 1
 IsAxesAligned: 1
 IsMixed: 0

Display Center Slice in Intrinsic Coordinates

Extract the center transverse slice from the image volume and display it using intrinsic image
coordinates.

Calculate the index of the center slice as half of the number of transverse slices.

sliceTransverse = round(medVol.NumTransverseSlices/2);

Extract the voxel data for the center slice by using the extractSlice object function. The function
orients the extracted slice imTransverse to match the standard radiological orientation. For
example, when you display an extracted transverse slice, the anterior direction always points toward
the top of the image, and the left anatomical direction points toward the right side of the image.

[imTransverse,positionTransverse,spacingsTransverse] = extractSlice(medVol,sliceTransverse,"transverse");

If the file metadata specifies a recommended display window to improve the contrast of the displayed
image, the WindowCenters and WindowWidths properties of the medicalVolume object specify the
center and width of the window, respectively. Calculate the minimum and maximum of the
recommended display window for medVol.

windowMin = medVol.WindowCenters(1)-0.5*medVol.WindowWidths(1);
windowMax = medVol.WindowCenters(1)+0.5*medVol.WindowWidths(1);

Display the extracted slice. By default, the imshow function displays the image in intrinsic
coordinates, in voxel units.

imshow(imTransverse,[windowMin windowMax]);
title("Center Transverse Slice, Intrinsic Coordinates")
axis on
xlabel("Right \rightarrow Left [voxels]")
ylabel("Posterior \rightarrow Anterior [voxels]")

1 Getting Started

1-4

Display Center Slice in Patient Coordinates

Display the center transverse slice in real-world units using patient coordinates.

Define the spatial referencing for the extracted slice. Get the limits of the slice in the patient
coordinate system by using the sliceLimits object function.

[XLim,YLim,ZLim] = sliceLimits(medVol,sliceTransverse,"transverse");

Create an imref2d object, RTransverse, that specifies the limits of the slice in patient coordinates.
The PlaneMapping property of medVol maps between the transverse, coronal, and sagittal planes
and the xyz-axes of the patient coordinate system. "transverse" is the third element of
PlaneMapping, meaning transverse slices are normal to the z-axis and parallel to the xy-plane.
Therefore, XLim and YLim define the transverse slice limits.

 Read, Process, and Write 3-D Medical Images

1-5

RTransverse = imref2d(size(imTransverse),XLim,YLim);

Display the transverse slice, specifying the imref2d object to plot the image in patient coordinates.

imshow(imTransverse,RTransverse,[windowMin windowMax])
title("Center Transverse Slice, Patient Coordinates")
xlabel("Right \rightarrow Left [mm]")
ylabel("Posterior \rightarrow Anterior [mm]")

Smooth Voxel Intensity Data

Smooth the image with a 3-D Gaussian filter. Applying a Gaussian filter is one approach for reducing
noise in medical images.

sigma = 2;
volSmooth = imgaussfilt3(vol,sigma);

1 Getting Started

1-6

Create a new medicalVolume object that contains the smoothed voxel intensities and preserves the
spatial referencing of the original file. Create a copy of the original object medVol and set the
Voxels property of the new object, medVolSmooth, to the smoothed image data.

medVolSmooth = medVol;
medVolSmooth.Voxels = volSmooth;

Extract and display the center slice of the smoothed voxel data. Use the same spatial referencing and
display window information as the original object to plot the image in patient coordinates.

[imSmooth,position,spacings] = extractSlice(medVolSmooth,sliceTransverse,"transverse");
figure
imshow(imSmooth,RTransverse,[windowMin windowMax])
title("Center Transverse Slice, Smoothed")
xlabel("Right \rightarrow Left [mm]")
ylabel("Posterior \rightarrow Anterior [mm]")

 Read, Process, and Write 3-D Medical Images

1-7

Write Processed Data to New NIfTI File

Write the smoothed image data to a new NIfTI file by using the write object function. The function
supports writing medical volume data in only the NIfTI file format.

niftiFilename = "LungCT01_smoothed.nii";
write(medVolSmooth,niftiFilename)

Read the new file using medicalVolume. Because the NIfTI file format does not contain metadata
related to modality or display windows, the Modality property value is "unknown" and the
WindowCenters and WindowWidths properties are empty.

1 Getting Started

1-8

medVolNIfTI = medicalVolume(niftiFilename);

See Also
medicalVolume | medicalref3d | extractSlice | sliceLimits

More About
• “Medical Image Coordinate Systems” on page 1-15

 Read, Process, and Write 3-D Medical Images

1-9

Get Started with Medical Image Labeler
The Medical Image Labeler app enables you to interactively label pixels in 2-D and 3-D medical
images. You can export labeled data as a groundTruthMedical object to train semantic
segmentation algorithms.

This tutorial provides an overview of the capabilities of the Medical Image Labeler and compares 2-
D and 3-D image labeling.

Start New Labeling Session
Manage labeling in the Medical Image Labeler using app sessions. You can create a volume session
to label 3-D image volumes or an image session to label 2-D images or series of images related by
time. Within one session, you can import and label multiple image files. These might be repeat scans
from one patient or scans from multiple patients with the same set of tissues, organs, or other regions
of interest to label. Follow these steps to create a new labeling session.

1 Open the Medical Image Labeler app from the Apps tab on the MATLAB® toolstrip, under
Image Processing and Computer Vision. You can also load the app by using the
medicalImageLabeler command.

2 On the app toolstrip, click New Session and select New Volume session (3-D) or New Image
session (2-D).

You can also load a previous session by clicking Open Session.
3 Specify a session folder. You must specify the session folder upfront because the app

automatically saves the label images as they are drawn. Therefore, the session folder must have
access to enough memory to save all label images for the session. For more details, see the “How
Medical Image Labeler Manages Ground Truth Labels” on page 1-14 section.

1 Getting Started

1-10

Load Image Data
Load images from a file by clicking Import Data and then, under Data, selecting From File. The app
supports loading these file formats:

• Volume session — Single NIfTI, NRRD, or DICOM file, or a directory containing multiple DICOM
files corresponding to one image volume.

• Image session — Single NIfTI or DICOM file.

If you load a previous session, the app reopens the image data that was open when you closed the
session.

Alternatively, you can load a groundTruthMedical object created programmatically or exported as
a MAT file from a previous app session. You can import the groundTruthMedical object directly
from a MAT file or from the MATLAB workspace. Importing a groundTruthMedical object loads the
image data, label data, and label definitions stored in the object into the app. For example, import a
groundTruthMedical object to load partially labeled data created outside the app or shared by a
colleague. For more details about working on a multi-person labeling team, see “Collaborate on Multi-
Labeler Medical Image Labeling Projects” on page 5-19.

The Data Browser pane lists all of the image files that are loaded in the app. The app displays 3-D
image data in the panes for the Transverse, Sagittal, and Coronal slice planes and a 3-D Volume
pane. The app displays 2-D image data in the Slice pane.

For more details about viewing image volumes in the app, see “Visualize 3-D Medical Image Data
Using Medical Image Labeler” on page 3-2.

Create Label Definitions
A label definition specifies the name, color, and order of each label assigned to the image.

You can create a label definition interactively in the app by clicking Create Label Definition in the
Label Definitions pane. Optionally, you can assign a name for the label by clicking it, or change the
color of the label by clicking the color square next to the label name.

 Get Started with Medical Image Labeler

1-11

Alternatively, you can import label definitions from a label definitions file or as part of a
groundTruthMedical object. You can create a label definitions file programmatically or load one
exported from a previous app session. For more detail about creating a label definitions file
programmatically, see the LabelDefinitions property of the groundTruthMedical object.

You must use the same label definitions across all images within a labeling session.

Label Image
Label pixels using the tools in the Draw and Automate tabs.

Manual Labeling

You can manually draw labels using the Freehand, Assisted Freehand, Polygon, and Paintbrush
tools.

Semi-Automated Labeling

You can add labels using semi-automated tools including Fill Region, Paint by Superpixels, and
Trace Boundary. You can interpolate labeled regions between image frames or volume slices using
the Auto Interpolate and Manually Interpolate tools.

Tool Description Image
Fill Region Flood fill label image or fill holes in

label region.

1 Getting Started

1-12

Tool Description Image
Paint by
Superpixels

Manually paint within an
adjustable-sized grid of pixels. To
use this tool, first select Paint
Brush and then click Paint by
Superpixels. Each superpixel
contains a cluster of similar
intensity values. Adjust the
Superpixels Size to change the
size of the superpixel grid.

Trace
Boundary

Label connected regions that have
similar intensity values. Select
Trace Boundary in the app
toolstrip, and then pause on a seed
pixel or voxel in the region you
want to label. The tool predicts the
boundary of the region by including
pixels or voxels with intensities
that are similar to the current seed.
Use the Threshold slider to adjust
the similarity threshold used to
predict the region boundary.
Increasing the threshold includes a
wider range of intensities above
and below the seed value in the
predicted region. Move your cursor
to change the seed.

Automated Labeling

The Automate tab contains built-in automation algorithms to refine existing labels or fully automate
labeling. The app provides slice-based algorithms including Active Contours, Adaptive Threshold,
Dilate, and Erode. In a volume session, the app additionally provides the Filter and Threshold,
Smooth Edges, and Otsu's Threshold algorithms, which you can apply to all slices or to a specified
slice range.

You can add a custom automation algorithm to use in the app. On the Automate tab, click Add
Algorithm. Import an existing algorithm by selecting From File, or create a new algorithm using the
provided function or class template.

Labeling Examples

• See “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2 for an example of
labeling 2-D image data.

• See “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10 for an example of
labeling 3-D image data.

Export Labeling Results
You can export the groundTruthMedical object and label definitions as files to share with a
colleague.

 Get Started with Medical Image Labeler

1-13

• To export the groundTruthMedical object as a MAT file, on the Home tab, click Export and,
under Ground Truth, select To File.

• To export the label definitions as a MAT file, on the Home tab, click Export and, under Label
Definitions, select To File.

Note The actual pixel label data is stored in the LabelData subfolder of the session folder. See
“How Medical Image Labeler Manages Ground Truth Labels” on page 1-14 for details.

How Medical Image Labeler Manages Ground Truth Labels
As you label images in the Medical Image Labeler app, the app automatically saves three sets of
data in the session folder associated with the current app session.

• A groundTruthMedical object stored as a MAT file. The groundTruthMedical object specifies
the file locations of the unlabeled images and corresponding label images, as well as the name and
color associated with each label.

• A subfolder named LabelData, which contains the label images.

Pixel label images created in an image session are saved in the LabelData folder as MAT files.
The MAT file stores the pixel labels as a uint8 array. You can read the label image into the
MATLAB workspace by using the load function.

Voxel label images created in a volume session are saved in the LabelData folder as NIfTI files.
The NIfTI file stores the voxel labels as a uint8 array. You can read the label images into the
MATLAB workspace by using the niftiread function.

• A subfolder named AppData, which contains data about the app session stored as a MAT file.

See Also
Medical Image Labeler | groundTruthMedical

Related Examples
• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
• “Collaborate on Multi-Labeler Medical Image Labeling Projects” on page 5-19

1 Getting Started

1-14

Medical Image Coordinate Systems
In medical imaging, there are two distinct coordinate systems: the intrinsic coordinate system and
the world, or patient, coordinate system. You can access locations in medical images using the
intrinsic coordinate system and the patient coordinate system.

The intrinsic coordinate system defines the voxel space, and the patient coordinate system defines
the anatomical space. To understand the position and orientation of intrinsic coordinates with respect
to the patient, you must transform the data into the patient coordinate system. You can use the
intrinsicToWorldMapping function to obtain the transformation between the intrinsic coordinates
and patient coordinates of a 3-D medical image volume stored as a medicalVolume object.

Patient Coordinate System
The patient coordinate system is made up of three orthogonal axes:

• Left (L)/Right (R) — x-axis
• Anterior (A)/Posterior (P) — y-axis
• Inferior (I)/Superior (S) — z-axis

The patient xyz-axes define the coronal, sagittal, and transverse anatomical planes. This table shows
the relationship between the anatomical planes and patient axes.

Anatomical Planes
and Patient Axes

Sagittal Plane Coronal Plane Transverse Plane

• Defined by the y- and
z-axes.

• Divides the body into
right and left

segments.

• Defined by the x- and
z-axes.

• Divides the body into
anterior and

posterior segments.

• Defined by the x- and
y-axes.

• Divides the body into
inferior and superior

segments.

Note The patient coordinate system rotates together with the physical orientation of the patient.

Mapping Patient Coordinate Axes to Anatomical Planes

Medical image files store a transformation matrix to map intrinsic coordinates (i, j, k) to patient
coordinates (x, y, z), and each file format has a different convention that defines the positive direction
of each axis.

For example, a DICOM file uses an LPS+ coordinate system and a NIfTI file uses an RAS+ coordinate
system.

 Medical Image Coordinate Systems

1-15

Patient Axes DICOM NIfTI
• x-axis values increase from

right to left
• y-axis values increase from

anterior to posterior
• z-axis values increase from

inferior to superior

• x-axis values increase from
left to right

• y-axis values increase from
posterior to anterior

• z-axis values increase from
inferior to superior

Intrinsic Coordinate System
The intrinsic coordinate system describes the spatial dimensions of the patient coordinate system.
Intrinsic coordinates are in units of voxels, while patient coordinates have real-world dimensions and
are usually in units of millimeters. You can obtain pixel dimensions from the PixelSpacing property of
a medicalImage object for 2-D data, and from the VoxelSpacing property of a medicalVolume
object for 3-D data.

The origin of the intrinsic coordinate system is located at the center of the first pixel (2-D image) or
voxel (3-D volume), represented by the black circle. The i-axis corresponds to the first dimension
(rows), the j-axis corresponds to the second dimension (columns), and the k-axis corresponds to the
third dimension of a medical image or volume.

This image grid shows the i-axis corresponding to the anatomical z-axis and the j-axis corresponding
to the anatomical x-axis,

whereas this image grid shows the i-axis corresponding to the anatomical x-axis and the j-axis
corresponding to the anatomical z-axis.

Both image grids represent a valid way a medical device might store voxels in a file. When you create
a medicalVolume object for an image volume, the spatial dimensions of the patient coordinate
system correspond to the values in the Voxels property of the object.

1 Getting Started

1-16

Tip Use the intrinsicToWorldMapping function to compute the geometric transformation
between the intrinsic and patient coordinate systems for a medical image volume.

See Also
Objects
medicalref3d | medicalVolume

Functions
intrinsicToWorldMapping

Related Examples
• “Read, Process, and Write 3-D Medical Images” on page 1-3
• “Display 3-D Medical Image Data in Patient Coordinate System” on page 3-8

 Medical Image Coordinate Systems

1-17

Introduction to Medical Imaging
Medical imaging is the acquisition and processing of images of the human body for clinical
applications. You can use medical image processing to improve the quality of medical images, for
diagnosis of medical conditions, for surgical planning, or for research. Medical imaging enables the
detailed, yet non-invasive, study of human anatomy. The success of medical imaging requires
collaboration between medical professionals such as radiologists, pathologists, or clinicians, and
technology professionals skilled in image processing. The major types of medical images you can
process for clinical applications are radiology images, such as MRI scans, CT scans, X-ray scans,
ultrasound scans, or PET/SPECT scans, or pathological microscopy images, such as biopsies and
blood smears.

You can analyze radiology images for a variety of applications.

• Diagnostic Systems: For example, to detect tumors from brain MRI scans, to detect COVID-19
from CT scans, to detect pneumonia from chest X-ray scans, or to detect tumors from breast
ultrasound.

• Biomedical Engineering: For example, to model bones or to design prostheses.
• Functional Analysis: For example, to analyze brain function from functional MRI.
• Pharmaceutical Research: For example, to measure drug efficacy and clearance time.
• Device Design: For example, to build new MRI, CT, ultrasound devices.

You can use Medical Imaging Toolbox to analyze radiology images for such applications. Although the
functions in Medical Imaging Toolbox are modality-agnostic, the major medical imaging modalities
that you can use the toolbox for include MRI, CT, X-ray, ultrasound, and PET/SPECT.

Common Medical Imaging Modalities

Magnetic Resonance Imaging (MRI)

The human body consists mostly of water, and therefore contains many hydrogen nuclei. MRI scans
acquire an image by disturbing the magnetic equilibrium of the hydrogen nuclei in the body. The
scanner then measures the time taken by the hydrogen nuclei to regain equilibrium, which varies
based on the composition of the organ being imaged. MRI scans are particularly useful for imaging
soft tissues such as the brain, spinal cord, nerves, muscles, ligaments, and tendons, as soft tissues
have more water content than bone. Unlike other radiology modalities, MRI scans do not use any
ionizing radiation. However, medical professionals must ensure that the patient undergoing the scan

1 Getting Started

1-18

does not have any metal on or in their body that might be attracted to the magnetic field. There are
several forms of MRI, based on the nature of particles and the type of magnetization property
measured, including T1-weighted MRI, T2-weighted MRI, diffusion MRI, and functional MRI. The
different types of MRI provide different insights into the human body.

Mathematically, an MRI scanner generates an image in the Fourier domain also known as k-space.
Each scan typically consists of a collection of 2-D slices imaged in k-space. The scanner transforms
the k-space image to the spatial domain, enabling you to observe the imaged anatomy. The final
output of the MRI scanner is a 3-D volume in the spatial domain with spatial localization details. You
can use a medicalVolume object to store the voxel data and spatial referencing information for the
MRI volume. MRI images are prone to degradations in the form of acquisition noise, undersampling
artifacts, and patient motion artifacts.

Computed Tomography (CT)

CT scans use X-ray radiation to image human anatomy. The magnitude of attenuation of the radiation
depends on the organ being imaged. Because bones effectively block X-rays, CT scans image them
particularly well. You can image tissues in the human body, using contrast agents, which help
attenuate the X-rays. As a result, CT scans are versatile and can be used for imaging of the head and
neck, as well as organs such as heart, lungs, abdomen, and pelvis. Additionally, CT scans are fast and
cost-effective for patients.

Mathematically, a CT scanner reconstructs the image from a series of projections obtained using the
Radon transform, typically represented as a sinogram. The Radon transform produces a collection of
projections of radiation through the body along different angles. There are a variety of techniques to
reconstruct an image from the projection data, including the inverse Radon transformation and other
iterative methods, enabling you to observe the imaged anatomy. The final output of the CT scanner is
a 3-D volume in the spatial domain with spatial localization details. You can use a medicalVolume
object to store the voxel data and spatial referencing information for the CT volume. CT images are
prone to degradations in the form of low contrast and artifacts due to miscalibration of the X-ray
detectors.

X-Ray Imaging

X-ray imaging is a direct digitized recording of the attenuation of the X-ray radiation on a 2-D sensor
array or a radiographic film. It is fast and cost-effective compared to other scans. Thus, it is a good
option for preliminary diagnosis. Mathematically, an X-ray image is a simple 2-D image captured by
an X-ray detector. You can use a medicalImage object to store the pixel data and metadata for an X-
ray image.

Ultrasound (US)

Ultrasound imaging involves emitting of ultrasound waves and measuring the strength of the
reflected echo waves. The strength of the reflected echo waves depends on the organ being imaged.
Because air can block ultrasound waves, it is not suitable for imaging bones, or tissues that contain
air such as lungs. You can use ultrasound imaging to, for example, monitor the development of a fetus
during pregnancy, or for imaging the heart, breast, and abdomen. You can use Doppler ultrasound for
functional imaging of the blood flow in the blood vessels.

Mathematically, an ultrasound image is derived from the reflected ultrasound waves. The final output
of the ultrasound scan is a sequence of 2-D images in the spatial domain. You can use a
medicalImage object to store the pixel data and metadata for an ultrasound image sequence. Note
that the emitted and reflected ultrasound waves can cause interference, which can show up as
speckle in the ultrasound image.

 Introduction to Medical Imaging

1-19

Nuclear Medicine Imaging

Nuclear medicine imaging involves introducing radioactive tracers, also known as radiotracers or
radiopharmaceuticals, that contain radioactive isotopes into the body of the patient. The movement of
the radiotracers in the body of the patient provides insights about the organs being imaged. Different
types of nuclear medicine imaging employ different radiotracers and are used for different purposes.
Mathematically, nuclear medicine imaging is performed as a tomography. The decay of the
radiotracers emits radiation, and the scanner measures the attenuation of the radiation in the
tomography. The final output of the scanner is a 3-D volume in the spatial domain with spatial
localization details. You can use a medicalVolume object to store the voxel data and spatial
referencing information for a 3-D volume.

Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) use
different types of radiotracers for imaging. The decay of the radiotracers used in PET emits positrons.
PET is used primarily for diagnosis and tracking of cancer. The decay of the radiotracers used in
SPECT emits gamma rays. SPECT is used primarily for diagnosis and tracking of heart disease.

Typical Workflow for Medical Image Analysis

Import and Spatial Referencing

A typical medical imaging workflow begins with importing the medical images into the workspace.
Medical images are available in file formats such as NIfTI, DICOM, NRRD, Analyze7.5, and Interfile.
Medical Imaging Toolbox provides several functions you can use to import medical images into the
workspace and export them back to medical image formats after processing. For more information,
see “Read, Process, and Write 3-D Medical Images” on page 1-3.

Display, Volume Rendering, and Surfaces

Once you have imported a medical image into the workspace, you can view and inspect the image to
plan your workflow. Medical Imaging Toolbox provides tools for detailed viewing of the medical
images in different orientations, for volume rendering to visualize intensity volumes in 3-D, and for
generating surfaces for efficient display or 3-D printing or modeling applications. For more
information, see “Visualize 3-D Medical Image Data Using Medical Image Labeler” on page 3-2.

1 Getting Started

1-20

Preprocessing and Augmentation

An imported medical image can contain noise that you must reduce. Multiple medical images that you
must process together can be misaligned and require registration. Also, if the medical imaging data
set is too small for your intended application, you might need to augment it. Medical Imaging Toolbox
provides functions for preprocessing and augmentation. For more information, see “Medical Image
Preprocessing” on page 4-2.

Ground Truth Labeling and Segmentation

For object detection in deep learning applications, you might need to perform segmentation and
labeling of the preprocessed medical image training data set. Medical Imaging Toolbox provides the
Medical Image Labeler app for segmentation and ground truth labeling. For more information, see
“Get Started with Medical Image Labeler” on page 1-10.

 Introduction to Medical Imaging

1-21

Import, Export, and Spatial Referencing

2

Read, Process, and View Ultrasound Data

This example shows how to import and display a 2-D multiframe ultrasound series, and how to apply
a denoising filter to each frame of the series.

You can use the medicalImage object to import image data and metadata from 2-D medical images
and series of images related by time. In this example, you use the properties and the extractFrame
object function of a medicalImage object to work with a multiframe echocardiogram ultrasound
series.

Read Ultrasound Image Series

Specify the name of an echocardiogram ultrasound series contained in a DICOM file.

filename = "heartUltrasoundSequenceVideo.dcm";

Read the metadata and image data from the file by creating a medicalImage object. The image data
is stored in the Pixels property. Each frame of the image series is a 600-by-800-by-3 pixel RGB
image. The FrameTime property indicates that each frame has a duration of 33.333 milliseconds. The
NumFrames property indicates that the series has a total of 116 image frames.

medImg = medicalImage(filename)

medImg =
 medicalImage with properties:

 Pixels: [600×800×116×3 uint8]
 Colormap: []
 SpatialUnits: "unknown"
 FrameTime: 33.3330
 NumFrames: 116
 PixelSpacing: [1 1]
 Modality: 'US'
 WindowCenter: []
 WindowWidth: []

Display Ultrasound Image Frames as Montage

The medicalImage object stores the image data dimensions in the order spatial-spatial-frames-
channel, where spatial indicates the spatial dimensions of each frame, frames indicates the number of
frames in the image series, and channel refers to the number of channels in each frame. To be
compatible with the montage function, use the permute function to reorder the dimensions to
spatial-spatial-channel-frames.

pixels = permute(medImg.Pixels,[1 2 4 3]);

Display the image frames side-by-side as a montage.

montage(pixels)

2 Import, Export, and Spatial Referencing

2-2

Display Ultrasound Series as Video

The FrameTime property specifies the number of milliseconds between frames. Calculate the frame
rate, in frames per second.

fps = 1/(medImg.FrameTime/1000)

fps = 30.0003

View the ultrasound series as a video by using the Video Viewer app. Specify the frame rate at which
to view the video by using the frame rate calculated from the file metadata.

implay(pixels,fps)

 Read, Process, and View Ultrasound Data

2-3

Reduce Speckle Noise

Reduce the noise in the ultrasound image series by applying a speckle-reducing anisotropic diffusion
filter to each frame. Extract each frame from the medicalImage object by using the extractFrame
object function, and convert the frame from RGB to grayscale. Apply the filter by using the
specklefilt function. Specify the DegreeOfSmoothing and NumIterations name-value
arguments to control the smoothing parameters.

[h,w,c,d] = size(pixels);
pixelsSmoothed = zeros(h,w,d);
for i = 1:d
 Ii = extractFrame(medImg,i);
 Ii = im2double(im2gray(Ii));

2 Import, Export, and Spatial Referencing

2-4

 pixelsSmoothed(:,:,i) = specklefilt(Ii,DegreeOfSmoothing=0.6,NumIterations=50);
end

Display the smoothed image data as a video.

implay(pixelsSmoothed,fps)

Store Smoothed Data as Medical Image Object

Create a new medicalImage object that contains the smoothed image pixels. Use the property
values from the original file to maintain the correct frame information.

 Read, Process, and View Ultrasound Data

2-5

medImgSmoothed = medImg;
medImgSmoothed.Pixels = pixelsSmoothed;
medImgSmoothed

medImgSmoothed =
 medicalImage with properties:

 Pixels: [600×800×116 double]
 Colormap: []
 SpatialUnits: "unknown"
 FrameTime: 33.3330
 NumFrames: 116
 PixelSpacing: [1 1]
 Modality: 'US'
 WindowCenter: []
 WindowWidth: []

Display the first frame of the new medical image object to verify it contains the smoothed data.

imshow(medImgSmoothed.Pixels(:,:,1))

2 Import, Export, and Spatial Referencing

2-6

See Also
medicalImage | extractFrame | specklefilt | montage | Video Viewer

Related Examples
• “Read, Process, and Write 3-D Medical Images” on page 1-3

 Read, Process, and View Ultrasound Data

2-7

Display and Volume Rendering

• “Visualize 3-D Medical Image Data Using Medical Image Labeler” on page 3-2
• “Display 3-D Medical Image Data in Patient Coordinate System” on page 3-8
• “Display Labeled Medical Image Volume in Patient Coordinates” on page 3-12
• “Create STL Surface Model of Femur Bone for 3-D Printing” on page 3-19

3

Visualize 3-D Medical Image Data Using Medical Image Labeler

This example shows how to interactively visualize and explore 3-D medical image data using the
Medical Image Labeler app.

Download Data

This example labels chest CT data from a subset of the Medical Segmentation Decathlon data set [1
on page 3-7]. Download the MedicalVolumNIfTIData.zip file from the MathWorks® website,
then unzip the file. The size of the subset of data is approximately 76 MB.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeNIfTIData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeNIfTIData");

Open Medical Image Labeler

Open the Medical Image Labeler app from the Apps tab on the MATLAB® toolstrip, under Image
Processing and Computer Vision. You can also open the app by using the medicalImageLabeler
command.

3 Display and Volume Rendering

3-2

Create New Volume Labeling Session

To start a new 3-D session, on the app toolstrip, click New Session and select New Volume session
(3-D). In the Create a new session folder dialog box, specify a location in which to save the new
session folder by entering a path or selecting Browse and navigating to your desired location. In the
New Session Folder box, specify a name for the folder for this app session. Select Create Session.

Load Image Data into Medical Image Labeler

To load an image into the Medical Image Labeler app, on the app toolstrip, click Import. Then,
under Data, select From File. Browse to the location containing the downloaded data, specified by
the dataFolder workspace variable, and select the file lung_027.nii.gz. For a Volume Session,
the imported data file can be a single DICOM or NIfTI file containing a 3-D image volume, or a
directory containing multiple DICOM files corresponding to a single image volume.

View Data as Anatomical Slice Planes

The app displays the data as anatomical slice planes in the Transverse, Sagittal, and Coronal
panes.

By default, the app displays the center slice in each slice plane. You can change the displayed slice by
using the scroll bar at the bottom of a slice pane, or you can click the pane and then press the left
and right arrow keys. The app displays the current slice number out of the total number of slices,
such as 132/264, for each slice pane. The app also displays anatomical display markers indicating the
anterior (A), posterior (P), left (L), right (R), superior (S), and inferior (I) directions. To toggle the

 Visualize 3-D Medical Image Data Using Medical Image Labeler

3-3

visibility of the display markers, on the app toolstrip, click Display Markers and, under 2-D Slices,
select or clear 2D Orientation Markers. You can zoom in on the current slice pane using the mouse
scroll wheel or the zoom controls that appear when you pause on the slice pane.

By default, the app displays the scan using the Radiological display convention, with the left side of
the patient on the right side of the image. To display the left side of the patient on the left side of the
image, on the app toolstrip, click Display Convention and select Neurological.

You can adjust the brightness and contrast used to display grayscale image data by using the

Window Level tool on the Home tab of the app toolstrip. First, on the app toolstrip, select .
Then, click and hold in any of the slice panes, and drag up and down to increase and decrease the
brightness, respectively, or left and right to increase and decrease the contrast. The updated window

bounds are displayed in the app toolstrip under Window Bounds. Clear to deactivate the
tool. Changing the display window does not modify the image data. To reset the brightness and
contrast, click Window Level and select Reset.

View Data as 3-D Volume

The app displays the data as a 3-D volume in the 3-D Volume pane. You can toggle the visibility of
the volume display using the Show Volume button on the Home tab of the app toolstrip.

In the 3-D Volume pane, click and drag to rotate the volume or use the scroll wheel to zoom. You can
adjust the volume display using the tools in the Volume Rendering tab of the app toolstrip. To
change the background color, click Background Color. Toggle the use of a background gradient by
clicking Use Gradient. To change the gradient color, with Use Gradient selected, click Gradient
Color. To restore the default background settings, click Restore Background. You can also view
orientation axes and scale bar display markers in the 3-D Volume pane. To toggle the visibility of
each display marker, on the Home tab of the app toolstrip, click Display Markers, and under 3-D
Volume, select or clear 3D Orientation Axes and Scale Bars.

3 Display and Volume Rendering

3-4

You can change how the app displays voxel intensity data by selecting one of several built-in
rendering styles. On the Volume Rendering tab, select CT - Bone from the Rendering Presets
gallery to use an alphamap and colormap recommended for highlighting bone tissue in computed
tomography (CT) scans. To refine the built-in displays for your data set, adjust the display parameters
by using the Rendering Editor. To open the editor, on the Volume Rendering tab of the app
toolstrip, click Rendering Editor.

 Visualize 3-D Medical Image Data Using Medical Image Labeler

3-5

Using the Rendering Editor, you can manually adjust the rendering technique, the transparency
alphamap, and the colormap of the 3-D voume rendering. The app supports these rendering
techniques:

• Volume Rendering — View the volume based on the specified color and transparency for each
voxel.

• Maximum Intensity Projection — View the voxel with the highest intensity value for each ray
projected through the data.

• Gradient Opacity — View the volume based on the specified color and transparency, with an
additional transparency applied if the voxel is similar in intensity to the previous voxel along the
viewing ray.

When you render a volume with uniform intensity using Gradient Opacity, the internal portion of
the volume appears more transparent than in the Volume Rendering rendering style, enabling
better visualization of label data, if present, and intensity gradients in the volume. For this example,
select Gradient Opacity.

3 Display and Volume Rendering

3-6

You can refine the alphamap and colormap by manipulating the plots and colorbar in the Rendering
Editor directly. To save your customized settings, in the Volume Rendering tab of the app toolstrip,
click Save Rendering. The app adds an icon for your custom settings to the gallery in the app
toolstrip, under User-Defined. If you have multiple files loaded in the app session, you can apply the
same built-in or custom rendering settings to all volumes by clicking Apply To All Volumes in the
app toolstrip.

Export Snapshot Image from App

You can export images from the Medical Image Labeler app to use for figures. In the Home tab of
the app toolstrip, click Save Snapshot. In the Save Snapshot dialog box, select the views you want to
export and click Save. By default, the app saves a snapshot for the transverse, coronal, and sagittal
slice planes, as well as the 3-D volume window. In the second dialog box, specify the location where
you want to save the images, and click Save again. Each snapshot is saved as a separate PNG file.
The 2-D snapshots match the current brightness and contrast settings of the app, but show the full
slice without any zooming or anatomical display markers. The 3-D snapshot matches the current
rotation and zoom values in the 3-D Volume pane, and contains any enabled display markers.

References

[1] Medical Segmentation Decathlon. "Lung." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/. The Medical Segmentation Decathlon data set is provided under the CC-BY-
SA 4.0 license. All warranties and representations are disclaimed. See the license for details.

See Also
Medical Image Labeler

Related Examples
• “Display 3-D Medical Image Data in Patient Coordinate System” on page 3-8
• “Display Labeled Medical Image Volume in Patient Coordinates” on page 3-12

 Visualize 3-D Medical Image Data Using Medical Image Labeler

3-7

http://medicaldecathlon.com
http://medicaldecathlon.com

Display 3-D Medical Image Data in Patient Coordinate System

This example shows how to display volumetric CT data in the patient coordinate system using the
volshow function. You can use the spatial referencing information from a medicalVolume object to
transform intrinsic image coordinates, in voxel units, to patient coordinates in real-world units such
as millimeters. This is particularly useful for visualizing anisotropic image voxels, which have unequal
spatial dimensions. Viewing images in the patient coordinate system accurately represents the aspect
ratio of anisotropic voxels, which avoids distortions in the image.

Download Image Volume Data

This example uses a chest CT volume saved as a directory of DICOM files. The volume is part of a
data set containing three CT volumes. The size of the entire data set is approximately 81 MB.
Download the data set from the MathWorks® website, then unzip the folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeDICOMData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeDICOMData","LungCT01");

Import Image Volume

Create a medical image volume object that contains the image data and spatial referencing
information for the CT volume. The Voxels property contains a numeric array of the voxel
intensities. The VoxelSpacing property indicates that the voxels are anisotropic, with a size of
0.7285-by-0.7285-by-2.5 mm.

medVol = medicalVolume(dataFolder)

medVol =
 medicalVolume with properties:

 Voxels: [512×512×88 int16]
 VolumeGeometry: [1×1 medicalref3d]
 SpatialUnits: "mm"
 Orientation: "transverse"
 VoxelSpacing: [0.7285 0.7285 2.5000]
 NormalVector: [0 0 1]
 NumCoronalSlices: 512
 NumSagittalSlices: 512
 NumTransverseSlices: 88
 PlaneMapping: ["sagittal" "coronal" "transverse"]
 Modality: "CT"
 WindowCenters: [88×1 double]
 WindowWidths: [88×1 double]

Display Image Volume Without Spatial Referencing

Extract the voxel data from the medicalVolume object.

V = medVol.Voxels;

Visualize the image volume by using the volshow function. The image volume appears squished in
the transverse direction. The x-, y- and z-axis display markers are aligned with the first, second, and
third dimensions of the image array, not the xyz-axes of the patient coordinate system.

3 Display and Volume Rendering

3-8

volIntrinsic = volshow(V,RenderingStyle="MaximumIntensityProjection");

By default, volshow plots the volume in the intrinsic coordinate system, which assumes cubic voxels
with uniform spatial dimensions. Therefore, if your image data is isotropic, then you can display the
image in intrinsic coordinates without distortions.

The Transformation property of the object created by volshow controls whether a transformation
is applied to the intrinsic coordinates. By default, the transformation value is a 4-by-4 identity matrix.

volIntrinsic.Transformation

ans =
 affinetform3d with properties:

 Dimensionality: 3
 A: [4×4 double]

volIntrinsic.Transformation.A

ans = 4×4

 Display 3-D Medical Image Data in Patient Coordinate System

3-9

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

You can display the volume in patient coordinates by specifying the Transformation property as an
affinetform3d object that maps between the intrinsic and patient coordinate systems.

Define Spatial Referencing

The VolumeGeometry property of the medical volume object contains a medicalref3d object that
specifies the spatial referencing for the volume. Extract the medicalref3d object for the chest CT
volume.

R = medVol.VolumeGeometry

R =
 medicalref3d with properties:

 VolumeSize: [512 512 88]
 Position: [88×3 double]
 VoxelDistances: {[88×3 double] [88×3 double] [88×3 double]}
 PatientCoordinateSystem: "LPS+"
 PixelSpacing: [88×2 double]
 IsAffine: 1
 IsAxesAligned: 1
 IsMixed: 0

Calculate the transformation that maps between the intrinsic and patient coordinate systems by using
the intrinsicToWorldMapping object function. The function returns an affinetform3d object,
tform.

tform = intrinsicToWorldMapping(R)

tform =
 affinetform3d with properties:

 Dimensionality: 3
 A: [4×4 double]

Display Image Volume with Spatial Referencing

Visualize the image volume by using the volshow function, specifying the Transformation
property as tform to include the spatial referencing information. The image volume no longer
appears squished in the transverse direction. The transformed volume is also rotated so that the x-,
y-, and z-axis display markers are aligned with the patient coordinate axes and point in the directions
specified by the PatientCoordinateSystem property of R.

volPatient = volshow(V,Transformation=tform,RenderingStyle="MaximumIntensityProjection");

3 Display and Volume Rendering

3-10

See Also
medicalVolume | medicalref3d | intrinsicToWorldMapping | volshow

Related Examples
• “Display Labeled Medical Image Volume in Patient Coordinates” on page 3-12

 Display 3-D Medical Image Data in Patient Coordinate System

3-11

Display Labeled Medical Image Volume in Patient Coordinates

This example shows how to display labeled 3-D medical image volumes by using the volshow
function. You can visualize labels as an overlay by using the OverlayData property of the Volume
object created by volshow. Additionally, you can use the spatial referencing information from a
medicalVolume object to transform intrinsic image coordinates, in voxel units, to patient
coordinates in real-world units such as millimeters.

Download Image Volume Data

This example uses a subset of the Medical Segmentation Decathlon data set [1 on page 3-18]. The
subset of data includes two CT chest volumes and corresponding label images, stored in the NIfTI file
format. Download the MedicalVolumNIfTIData.zip file from the MathWorks® website, then
unzip the file. The size of the data file is approximately 76 MB.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeNIfTIData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeNIfTIData");

Specify the filenames of one CT volume and its label image.

dataFile = fullfile(dataFolder,"lung_043.nii.gz");
labelDataFile = fullfile(dataFolder,"LabelData","lung_043.nii.gz");

Import Image Volume

Create a medical volume object that contains the image data and spatial referencing information for
the CT volume. The Voxels property contains a numeric array of the voxel intensities. The
VoxelSpacing property indicates that the voxels are anisotropic, with a size of 0.7695-by-0.7695-
by-2.5 mm.

medVolData = medicalVolume(dataFile)

medVolData =
 medicalVolume with properties:

 Voxels: [512×512×129 single]
 VolumeGeometry: [1×1 medicalref3d]
 SpatialUnits: "mm"
 Orientation: "transverse"
 VoxelSpacing: [0.7695 0.7695 2.5000]
 NormalVector: [0 0 -1]
 NumCoronalSlices: 512
 NumSagittalSlices: 512
 NumTransverseSlices: 129
 PlaneMapping: ["sagittal" "coronal" "transverse"]
 Modality: "unknown"
 WindowCenters: 0
 WindowWidths: 0

The VolumeGeometry property of a medical volume object contains a medicalref3d object that
specifies the spatial referencing information. Extract the medicalref3d object for the CT scan.

R = medVolData.VolumeGeometry;

3 Display and Volume Rendering

3-12

Calculate the transformation that maps between the intrinsic and patient coordinate systems by using
the intrinsicToWorldMapping object function. The function returns an affinetform3d object,
tform.

tform = intrinsicToWorldMapping(R);

Import Label Data

Create a medical volume object that contains the label image data. The label image has the same
spatial information as the intensity CT volume.

medvolLabels = medicalVolume(labelDataFile);

Display CT Volume with Tumor Overlay

Create a colormap and transparency map to display the rib cage. The alpha and color values are
based on the CT-bone rendering style from the Medical Image Labeler app. The intensity values
for this volume have been tuned using trial and error.

alpha = [0, 0, 0.72, 0.72];
color = ([0 0 0; 186 65 77; 231 208 141; 255 255 255]) ./ 255;
intensity = [-3024 -200 0 3071];
queryPoints = linspace(min(intensity),max(intensity),256);
alphamap = interp1(intensity,alpha,queryPoints)';
colormap = interp1(intensity,color,queryPoints);

View the CT volume with the custom colormap and transparency map. The volshow function creates
a Volume object, vol. Specify the Transformation property of vol as tform to include the spatial
referencing information and plot the image in patient coordinates. Drag the cursor to rotate the
volume. Use the scroll wheel to zoom in and out of the volume.

vol = volshow(medVolData.Voxels, ...
 Colormap=colormap, ...
 Alphamap=alphamap, ...
 Transformation=tform);

 Display Labeled Medical Image Volume in Patient Coordinates

3-13

Programatically set the camera position and camera target of the scene to view the volume in the
coronal anatomical plane. You can also set the view interactively by clicking the Y orientation marker
in the figure window.

scene = vol.Parent;
scene.CameraPosition = [-4.0999 314.9362 -143.0000];
scene.CameraTarget = [-4.0999 -6.9636 -143.0000];

3 Display and Volume Rendering

3-14

View the tumor label image as an overlay on the CT volume. You can set the OverlayData and
OverlayAlphamap properties of an existing Volume object, or specify them during creation using
volshow.

vol.OverlayData = medvolLabels.Voxels;
vol.OverlayAlphamap = 1;

 Display Labeled Medical Image Volume in Patient Coordinates

3-15

Display CT Volume as Slice Planes

Visualize the CT volume and label overlay as slice planes. Use the RenderingStyle name-value
argument to specify the rendering style as "SlicePlanes". Specify the tumor label overlay using
the OverlayData name-value argument.

volSlice = volshow(medVolData.Voxels,OverlayData=medvolLabels.Voxels,Transformation=tform,RenderingStyle="SlicePlanes",Alphamap=linspace(0.01,0.2,256),OverlayAlphamap=0.75);

To scroll through the transverse slices, pause the cursor on the transverse slice until it highlights in
blue, then drag the cursor along the z-axis.

3 Display and Volume Rendering

3-16

Drag the cursor to rotate the volume. The tumor overlay is visible in the slices for which the overlay
is defined.

 Display Labeled Medical Image Volume in Patient Coordinates

3-17

References

[1] Medical Segmentation Decathlon. "Lung." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/. The Medical Segmentation Decathlon data set is provided under the CC-BY-
SA 4.0 license. All warranties and representations are disclaimed. See the license for details.

See Also
volshow | Volume Properties | medicalref3d | medicalVolume | intrinsicToWorldMapping

Related Examples
• “Display 3-D Medical Image Data in Patient Coordinate System” on page 3-8

3 Display and Volume Rendering

3-18

http://medicaldecathlon.com
http://medicaldecathlon.com

Create STL Surface Model of Femur Bone for 3-D Printing

This example shows how to convert a segmentation mask from a CT image into an STL surface model
suitable for 3-D printing.

There are several clinical applications and research areas involving 3-D printing of medical image
data:

• Surgical treatment planning using patient-specific anatomical models.
• Fabrication of custom prosthetics, implants, or surgical tools.
• Bioprinting of tissues and organs.

3-D printing creates physical models of computer-generated surface models. The typical workflow for
3-D printing anatomical structures from medical image volumes includes these steps:

1 Segment the region of interest, such as a bone, organ, or implant.
2 Convert the segmentation mask to a triangulated surface, defined by faces and vertices.
3 Write the triangulation to an STL file, which most commercial 3-D printers accept.
4 Import the STL file into the 3-D printing software, and print the model.

This example converts a mask of a femur bone into a triangulated surface, and writes an STL file
suitable for 3-D printing.

Download Image Volume Data

This example uses a binary segmentation mask of a femur. The mask was created by segmenting a CT
scan from the Medical Segmentation Decathlon liver data set [1 on page 3-25] using the Medical
Image Labeler app. For an example of how to segment medical image volumes, see “Label 3-D
Medical Image Using Medical Image Labeler” on page 5-10.

 Create STL Surface Model of Femur Bone for 3-D Printing

3-19

When you label an image in the Medical Image Labeler, the app saves the segmentation mask as a
NIfTI file. You can find the file path of the mask generated in an app session by checking the
LabelData property of the groundTruthMedical object exported from that session.

This example downloads the femur mask as part of a data set containing the original abdominal CT
volume as well as masks of the femur and liver. Download the data set from the MathWorks®
website, then unzip the folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeLiverNIfTIData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeLiverNIfTIData");

Specify the filename of the femur mask.

filename = fullfile(dataFolder,"Femur.nii");

Load CT Segmentation Mask

Import the femur mask by creating a medicalVolume object for the NIfTI file. The image data is
stored in the Voxels property. The VoxelSpacing property indicates that the voxels are anisotropic,
with a size of 0.7-by-0.7-by-5.0 mm.

medVol = medicalVolume(filename)

medVol =
 medicalVolume with properties:

 Voxels: [512×512×75 uint8]
 VolumeGeometry: [1×1 medicalref3d]
 SpatialUnits: "mm"
 Orientation: "transverse"
 VoxelSpacing: [0.7031 0.7031 5]
 NormalVector: [0 0 1]
 NumCoronalSlices: 512
 NumSagittalSlices: 512
 NumTransverseSlices: 75
 PlaneMapping: ["sagittal" "coronal" "transverse"]
 Modality: "unknown"
 WindowCenters: 0
 WindowWidths: 0

The VolumeGeometry property of a medical volume object contains a medicalref3d object that
specifies the spatial referencing information. Extract the medicalref3d object for the CT scan into a
new variable, R.

R = medVol.VolumeGeometry;

Extract Isosurface of Femur

Specify the isovalue for isosurface extraction.

isovalue = 0.05;

Extract the vertices and faces that define an isosurface for the image volume at the specified
isovalue.

3 Display and Volume Rendering

3-20

[faces,vertices] = extractIsosurface(medVol.Voxels,isovalue);

The vertices output provides the intrinsic ijk-coordinates of the surface points, in voxels. Create a
triangulation of the vertices in intrinsic coordinates.

triInstrinsic = triangulation(double(faces),double(vertices));

If you display the surface defined by vertices in intrinsic coordinates, the femur surface appears
squished. Intrinsic coordinates do not account for the real-world voxel dimensions, and the voxels in
this example are larger in the third dimension than in the first two dimensions.

viewerIntrinsic = viewer3d;
obj = images.ui.graphics3d.Surface(viewerIntrinsic,Data=triInstrinsic,Color=[0.88 0.84 0.71],Alpha=0.9);

Transform Vertices into Patient Coordinates

To accurately represent the femur surface points, transform the ijk-coordinates in vertices to the
patient coordinate system defined by the medicalref3d object, R. The X, Y, and Z outputs define the
xyz-coordinates of the surface points, in millimeters.

 Create STL Surface Model of Femur Bone for 3-D Printing

3-21

I = vertices(:,1);
J = vertices(:,2);
K = vertices(:,3);

[X,Y,Z] = intrinsicToWorld(R,I,J,K);
verticesPatientCoords = [X Y Z];

Create a triangulation of the transformed vertices, verticesPatientCoords. Maintain the original
connectivity defined by faces.

triPatient = triangulation(double(faces),double(verticesPatientCoords));

Display the surface defined by the transformed patient coordinates. The femur surface no longer
appears squished.

viewerPatient = viewer3d;
obj = images.ui.graphics3d.Surface(viewerPatient,Data=triPatient,Color=[0.88 0.84 0.71],Alpha=0.9);

Create STL File

Check the number of vertices in the surface, which corresponds to the length of the Points property.

3 Display and Volume Rendering

3-22

triPatient

triPatient =
 triangulation with properties:

 Points: [21950×3 double]
 ConnectivityList: [43896×3 double]

You can reduce the number of triangles required to represent a surface, while preserving the shape
of the associated object, by using the reducepatch function. Reduce the number of triangles in the
femur surface by 50%. The reducepatch function returns a structure with fields faces and
vertices.

pReduced = reducepatch(faces,verticesPatientCoords,0.5);

Create a triangulation of the reduced surface. The number of vertices, specified by the Points
property, is approximately one-half of the number of vertices in triPatient.

triReduced = triangulation(double(pReduced.faces),double(pReduced.vertices))

triReduced =
 triangulation with properties:

 Points: [10976×3 double]
 ConnectivityList: [21948×3 double]

Display the reduced surface to verify that the shape of the femur is preserved.

viewerPatient = viewer3d;
obj = images.ui.graphics3d.Surface(viewerPatient,Data=triReduced,Color=[0.88 0.84 0.71],Alpha=0.9);

 Create STL Surface Model of Femur Bone for 3-D Printing

3-23

Write the surface data to an STL format file by using the stlwrite function.

Name = "Femur.stl";
stlwrite(triReduced,Name)

You can use the STL model file as input to most commercial 3-D printers to generate a physical 3-D
model of the femur. This image shows a 3-D print of the STL file.

3 Display and Volume Rendering

3-24

References

[1] Medical Segmentation Decathlon. "Liver." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/.

The Medical Segmentation Decathlon data set is provided under the CC-BY-SA 4.0 license. All
warranties and representations are disclaimed. See the license for details.

See Also
Apps
Medical Image Labeler

Functions
extractIsosurface | stlwrite | triangulation | patch | reducepatch

Objects
medicalref3d | medicalVolume

 Create STL Surface Model of Femur Bone for 3-D Printing

3-25

http://medicaldecathlon.com/
http://medicaldecathlon.com/

Related Examples
• “Display 3-D Medical Image Data in Patient Coordinate System” on page 3-8

3 Display and Volume Rendering

3-26

Image Preprocessing and Augmentation

• “Medical Image Preprocessing” on page 4-2
• “Medical Image Registration” on page 4-5
• “Register Multimodal Medical Image Volumes with Spatial Referencing” on page 4-9

4

Medical Image Preprocessing
In this section...
“Background Removal” on page 4-2
“Denoising” on page 4-2
“Resampling” on page 4-2
“Registration” on page 4-3
“Intensity Normalization” on page 4-3
“Preprocessing in Advanced Workflows” on page 4-4

Image preprocessing prepares data for a target workflow. The main goals of medical image
preprocessing are to reduce image acquisition artifacts and to standardize images across a data set.
Your exact preprocessing requirements depend on the modality and procedure used to acquire data,
as well as your target workflow. Some common preprocessing steps include background removal,
denoising, resampling, registration, and intensity normalization.

Background Removal
Background removal involves segmenting the region of interest from the image background. By
limiting the image to the region of interest, you can improve the efficiency and accuracy of your
target workflow. One example of background removal is skull stripping, which removes the skull and
other background regions from MRI images of the brain. Background removal typically consists of
applying a mask of the region of interest that you create using morphological operations or other
segmentation techniques. For more information about morphological operations, see “Types of
Morphological Operations”.

To perform background removal, multiply the mask image and the original image. For example,
consider a grayscale image, im, and a mask image, mask, that is the same size as im and has a value
of 1 for every element in the region of interest and 0 for each element of the background. This code
returns a new image, imROI, in which the elements in the region of interest have the same values as
in im, and the background elements all have values of 0.

imROI = im.*mask;

Denoising
Medical imaging modalities are susceptible to noise, which introduces random intensity fluctuations
in an image. To reduce noise, you can filter images in the spatial and frequency domains. Medical
Imaging Toolbox provides the specklefilt function, which reduces the speckle noise common in
ultrasound images. For additional image filtering tools, see “Image Filtering” in Image Processing
Toolbox™. You can also denoise medical image data using deep learning. For details, see “Train and
Apply Denoising Neural Networks”.

Resampling
Use resampling to change the pixel or voxel size of an image without changing its spatial limits in the
patient coordinate system. Resampling is useful for standardizing image resolution across a data set
that contains images from multiple scanners.

4 Image Preprocessing and Augmentation

4-2

To resample 3-D image data in a medicalVolume object, use the resample object function. Using
the resample object function maintains the spatial referencing of the volume.

To resample a 2-D medical image, you can use the imresize function with a target number of
columns and rows. For example, this code shows how to resample the pixel data in the
medicalImage object medImg to a target pixel size, specified by targetPixelSpacing.

ratios = medImg.PixelSpacing./targetPixelSpacing;
targetSize = ceil(ratios.*size(medImg.Pixels)); % in pixels
resamplePixels = imresize(medImg.Pixels,targetSize);

Define the spatial referencing of the original and resampled images by using the imref2d object.

originalR = imref2d(size(medImg.Pixels),medImg.PixelSpacing(1),medImg.PixelSpacing(2));
resampledR = imref2d(size(resamplePixels),targetPixelSpacing(1),targetPixelSpacing(2))

Registration
You can use image registration to standardize the spatial alignment of the 2-D or 3-D medical images
in a data set. Registration enables you to align images of different patients, or images of the same
patient acquired at different times, on different scanners, or using different imaging modalities.
Medical Imaging Toolbox provides functions for rigid, similarity, and deformable image registration
and rigid surface registration. For more details, see “Medical Image Registration” on page 4-5.

Intensity Normalization
Intensity normalization standardizes the range of image intensity values across a data set. Typically,
you perform this process in two steps. First, clip intensities to a smaller range. Second, normalize the
clipped intensity range to the range of the image data type, such as [0, 1] for double or [0, 255] for
uint8. Whereas visualizing image data using a display window changes how you view the data,
intensity normalization actually updates the image values.

One normalization strategy is to rescale the intensity values within each image relative to the
minimum and maximum values in the image. For example, this code uses the rescale function to
limit the intensities in the image im to the 0.5 and 99.5 percentile values, and to rescale the values to
the range [0, 1]:

imMax = prctile(im(:),99.5);
imMin = prctile(im(:),0.5);
imNormalized = rescale(im,0,1,InputMin=imMin,InputMax=imMax);

Another strategy is to rescale values to the same intensity range across images. In CT imaging,
intensity windowing limits intensity values, in Hounsfield units (HU), to a suitable range for the tissue
of interest. HU is a standard CT density scale defined by the density of air (–1000 HU) and water (0
HU). The medicalVolume object automatically rescales the data returned in the Voxels property
for DICOM files that define the RescaleIntercept and RescaleSlope metadata attributes. You
can find suggested intensity windows for your application in clinical guidelines or from your scanner
manufacturer. For example, to segment lungs from a chest CT, you might use the range [–1200, 600]
HU, and to segment bone, which is more dense, you might use the range [–1400, 2400]. This figure
shows a transverse slice of a chest CT with no intensity windowing, a "lung" intensity window, and a
"bone" intensity window.

 Medical Image Preprocessing

4-3

This code applies intensity windowing to the image stored in the DICOM file dicomFile, assuming
the values of medVol.Voxels are in units of HU:

medVol = medicalVolume(dicomFile);
lungWindow = [-1200 600];
imWindowed = rescale(medVol.Voxels,0,1,InputMin=lungwin(1),InputMax=lungwin(2));

Preprocessing in Advanced Workflows
For an example that preprocesses image data as part of a deep learning workflow, see “Brain MRI
Segmentation Using Pretrained 3-D U-Net Network” on page 6-24.

See Also
specklefilt | resample | rescale | medicalVolume

Related Examples
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 6-24
• “Segment Lungs from CT Scan Using Pretrained Neural Network” on page 6-14

More About
• “Types of Morphological Operations”
• “Train and Apply Denoising Neural Networks”
• “Medical Image Registration” on page 4-5

4 Image Preprocessing and Augmentation

4-4

Medical Image Registration
Medical image registration is the process of aligning multiple medical images, volumes, or surfaces to
a common coordinate system. In medical imaging, you may need to compare scans of multiple
patients or scans of the same patient taken in different sessions under different conditions. Use
medical image registration as a preprocessing step to align the medical images to a common
coordinate system before you analyze them.

Scenarios for Medical Image Registration
Classification by Type of Misalignment

• Translation registration - Required when the two images, volumes, or surfaces differ by a global
shift common to all pixels, voxels, or points.

• Rigid registration - Required when the two images, volumes, or surfaces differ by a global shift
and a global rotation common to all pixels, voxels, or points.

• Similarity registration - Required when the two images, volumes, or surfaces differ by a global
shift, a global rotation, and a global scale factor common to all pixels, voxels, or points.

• Affine registration - Required when the two images, volumes, or surfaces differ by a global shift, a
global rotation, a global scale factor, and a global shear factor common to all pixels, voxels, or
points.

 Medical Image Registration

4-5

• Deformable registration (also known as non-rigid registration) - Required when the images,
volumes, or surfaces differ by local transformations specific to certain pixels, voxels, or points.

Classification by Type of Input

• Image registration - Aligns 2-D grayscale images.
• Volume registration - Aligns 3-D intensity volumes.
• Surface registration - Aligns surfaces extracted from 3-D intensity volumes.
• Groupwise registration - Aligns slices in a series of 2-D medical images, such as a timeseries, to

reduce sliding motion between the slices.

Functions for Medical Image Registration
Medical Imaging Toolbox provides various functions for medical image registration.

Function Type of
Misalignment

Type of Input Function Details Method

imregister Translation

Rigid

Similarity

Affine

2-D grayscale
images

3-D intensity
volumes

Specify
configuration using
imregconfig.
Transform
returned by
imregtform.

Optimization-based
technique. Regular
step gradient
descent optimizer
with mean squares
metric for
monomodal
configuration. One-
plus-one
evolutionary
optimizer with
Mattes mutual
information metric
for multimodal
configuration.

4 Image Preprocessing and Augmentation

4-6

Function Type of
Misalignment

Type of Input Function Details Method

imregicp Translation

Rigid

Surfaces Transform
returned by
function itself.

Optimization-based
technique. Uses
the iterative
closest point (ICP)
algorithm.

imregmtb Translation 2-D grayscale
images

3-D RGB images

Transform
returned by
function itself.

Fast registration
technique. Uses
median threshold
bitmap (MTB)
method. Suitable
for monomodal and
multimodal
images.

imregmoment Translation

Rigid

Similarity

2-D grayscale
images

3-D intensity
volumes

Transform
returned by
function itself.

Fast registration
technique. Uses
moment of mass
method, with the
option to also use
the median
threshold bitmap
(MTB) method.
Suitable for
monomodal and
multimodal images
and volumes.

imregdemons Deformable 2-D grayscale
images

3-D intensity
volumes

Displacement field
returned by
function itself.

Deformable
registration
technique. Uses a
diffusion-based
Demons algorithm.

imregdeform Deformable 2-D grayscale
images

3-D intensity
volumes

Displacement field
returned by
function itself.

Deformable
registration
technique. Uses
the isotropic total
variation
regularization
method.

imreggroupwise Deformable 3-D image series
consisting of 2-D
slices

Does not require a
reference image.
Displacement field
returned by
function itself.

Groupwise
registration
technique. Uses
the isotropic total
variation
regularization
method.

 Medical Image Registration

4-7

Function Type of
Misalignment

Type of Input Function Details Method

imregcorr Translation

Rigid

Similarity

2-D grayscale
images

3-D RGB images

Function returns
only the transform.
Use imwarp to
apply the
transformation and
get the registered
image.

FFT-based
technique. Uses
the phase
correlation
method.

See Also
Functions
imregister | imregtform | imregconfig | imregicp | imregmtb | imregmoment | imregdemons
| imregdeform | imreggroupwise | imregcorr | imwarp

4 Image Preprocessing and Augmentation

4-8

Register Multimodal Medical Image Volumes with Spatial
Referencing

This example shows how to align two medical image volumes using moment-of-mass-based
registration.

Multimodal image registration aligns images acquired using different imaging modalities, such as
MRI and CT. Even when acquired for the same patient and region of interest, multimodal images can
be misaligned due to differences in patient positioning (translation or rotation) and voxel size
(scaling). Different imaging modalities often have different voxel sizes due to scanner variability and
concerns about scan time and radiation dose.

The imregmoment function enables fast registration of 3-D image volumes, including multimodal
images. To register images with scaling differences using imregmoment, you must define the spatial
referencing for the images. Spatial referencing maps the row, column, and slice indices of the image
array to the patient coordinate system. You can use the medicalVolume object to automatically
import image volumes and spatial referencing metadata from an image file.

In this example, you use medicalVolume and imregmoment to register multimodal MRI and CT
image of the head.

Load Images

The data used in this example is a modified version of the 3-D CT and MRI data sets from The
Retrospective Image Registration Evaluation (RIRE) Dataset, provided by Dr. Michael Fitzpatrick. For
more information, see the RIRE Project homepage. The modified data set contains one CT scan and
one MRI scan stored in the NRRD file format. The size of the entire data set is approximately 35 MB.
Download the data set from the MathWorks® website, then unzip the folder.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalRegistrationNRRDdata.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)

In image registration, consider one image to be the fixed image and the other image to be the moving
image. The goal of registration is to align the moving image with the fixed image. In this example, the
fixed image is a T1 weighted MRI image. The moving image is a CT image from the same patient. The
images are stored in the NRRD file format.

Use medicalVolume to read the MRI image. By looking at the Voxels and VoxelSpacing
properties, you can determine that the MRI volume is a 256-by-256-by-26 voxel array, where each
voxel is 1.25-by-1.25-by-4.0 mm.

filenameMRI = fullfile(filepath,"supportfilesNRRD","Patient007MRT1.nrrd");
fixedMRIVolume = medicalVolume(filenameMRI)

fixedMRIVolume =
 medicalVolume with properties:

 Voxels: [256×256×26 single]
 VolumeGeometry: [1×1 medicalref3d]
 SpatialUnits: "unknown"
 Orientation: "unknown"
 VoxelSpacing: [1.2500 1.2500 4]
 NormalVector: [0 0 1]

 Register Multimodal Medical Image Volumes with Spatial Referencing

4-9

https://rire.insight-journal.org/download.html
https://rire.insight-journal.org/download.html
https://rire.insight-journal.org/index.html

 NumCoronalSlices: []
 NumSagittalSlices: []
 NumTransverseSlices: []
 PlaneMapping: ["unknown" "unknown" "unknown"]
 Modality: "unknown"
 WindowCenters: []
 WindowWidths: []

Import the CT image. The size of each voxel in the CT image is 0.65-by-0.65-by-4 mm, which is
smaller than in the MRI image. Therefore, the CT volume contains more voxels than the MRI scan for
the same region of interest.

filenameCT = fullfile(filepath,"supportfilesNRRD","Patient007CT.nrrd");
movingCTVolume = medicalVolume(filenameCT)

movingCTVolume =
 medicalVolume with properties:

 Voxels: [512×512×28 single]
 VolumeGeometry: [1×1 medicalref3d]
 SpatialUnits: "unknown"
 Orientation: "unknown"
 VoxelSpacing: [0.6536 0.6536 4]
 NormalVector: [0 0 1]
 NumCoronalSlices: []
 NumSagittalSlices: []
 NumTransverseSlices: []
 PlaneMapping: ["unknown" "unknown" "unknown"]
 Modality: "unknown"
 WindowCenters: []
 WindowWidths: []

Extract the image voxel data from the Voxels property of the medicalVolume objects.

fixedMRIVoxels = fixedMRIVolume.Voxels;
movingCTVoxels = movingCTVolume.Voxels;

Display Unregistered Images

Use the helperVolumeRegistration helper function to judge image alignment. The output aces
remain in syn if you interactively rotate the view.

The plot is in intrinsic coordinates, in units of voxels. The axes limits are different between the two
images because of the differences in image array size.

helperVolumeRegistration(fixedMRIVoxels,movingCTVoxels);

4 Image Preprocessing and Augmentation

4-10

You can also use imshowpair to check alignment in single slices from the fixed and moving volumes.
Use imshowpair to view the middle transverse slice of each volume.

First, calculate the location of the middle slice of each volume. The VolumeGeometry property of the
medical volume object contains a medicalref3d object, which specifies spatial details about the
image. Use the VolumeSize property of each medicalref3d object to calculate the location of the
middle slice of the corresponding volume, in voxels.

fixedVolumeSize = fixedMRIVolume.VolumeGeometry.VolumeSize;
movingVolumeSize = movingCTVolume.VolumeGeometry.VolumeSize;

centerFixed = fixedVolumeSize/2;
centerMoving = movingVolumeSize/2;

Next, display the image slices using imshowpair. Plot the slice in the third spatial dimension, which
corresponds to the transverse anatomical plane. The MRI slice is magenta, and the CT slice is green.
The images are misaligned due to translations, rotations, and scaling.

figure
imshowpair(movingCTVoxels(:,:,centerMoving(3)),fixedMRIVoxels(:,:,centerFixed(3)))
title("Unregistered Transverse Slice")

 Register Multimodal Medical Image Volumes with Spatial Referencing

4-11

Register Images

To obtain accurate scaling results using imregmoment, you must specify spatial referencing
information for each volume. Use the spatial referencing information stored in the medicalVolume
objects to define corresponding imref3d spatial referencing objects. Specify the image array
dimensions and voxel sizes using the VolumeSize and VoxelSpacing properties, respectively, of
the medicalVolume objects.

Rfixed = imref3d(fixedVolumeSize,fixedMRIVolume.VoxelSpacing(2),fixedMRIVolume.VoxelSpacing(1),fixedMRIVolume.VoxelSpacing(3));
Rmoving = imref3d(movingVolumeSize,movingCTVolume.VoxelSpacing(2),movingCTVolume.VoxelSpacing(1),movingCTVolume.VoxelSpacing(3));

Use imregmoment to register the moving volume to the fixed volume. Specify the
MedianThresholdBitmap name-value argument as true, which is appropriate for multimodal
images .

4 Image Preprocessing and Augmentation

4-12

[geomtform,movingCTRegisteredVoxels] = imregmoment(movingCTVoxels,Rmoving,fixedMRIVoxels,Rfixed,MedianThresholdBitmap=true);

The geomtform output is an affinetform3d geometric transformation object. The T property of
geomtform contains the 3-D affine transformation matrix that maps the moving CT volume to the
fixed MRI volume.

geomtform.T

ans = 4×4

 0.5229 -0.0021 0.0007 0
 0.0020 0.5229 0.0033 0
 -0.0014 -0.0063 1.0000 0
 -4.8094 -16.0063 -1.3481 1.0000

The movingRegisteredVoxels output contains the registered CT image. The imregmoment
function resamples the registered image coordinates using the voxel grid of the fixed image.
Therefore, the registered volume and fixed volume are the same size and have voxel-to-voxel
correspondence.

whos movingCTRegisteredVoxels fixedMRIVoxels

 Name Size Bytes Class Attributes

 fixedMRIVoxels 256x256x26 6815744 single
 movingCTRegisteredVoxels 256x256x26 6815744 single

Display Registered Volumes

To check the registration results, use imshowpair to view the middle transverse slices of the fixed
and registered volumes. The images are aligned and scaled to the same size.

figure
imshowpair(movingCTRegisteredVoxels(:,:,centerFixed(3)),fixedMRIVoxels(:,:,centerFixed(3)))
title("Registered Transverse Slice")

 Register Multimodal Medical Image Volumes with Spatial Referencing

4-13

Use helperVolumeRegistration to view the results of the 3-D registration. The axes limits are the
same, because of scaling the CT volume during registration.

helperVolumeRegistration(fixedMRIVoxels,movingCTRegisteredVoxels);

4 Image Preprocessing and Augmentation

4-14

Create medicalVolume Object for Registered Image

Create a new medicalVolume object that contains the registered voxel data and its spatial
referencing information. You can create a medicalVolume object by specifying a voxel array and a
medicalref3d object containing spatial details. The registered CT volume has the same spatial
referencing as the original MRI volume, so use the medicalref3d object stored in the
VolumeGeometry property of fixedMRIVolume.

R = fixedMRIVolume.VolumeGeometry;
movingRegisteredVolume = medicalVolume(movingCTRegisteredVoxels,R)

movingRegisteredVolume =
 medicalVolume with properties:

 Voxels: [256×256×26 single]
 VolumeGeometry: [1×1 medicalref3d]
 SpatialUnits: "unknown"
 Orientation: "unknown"
 VoxelSpacing: [1.2500 1.2500 4]
 NormalVector: [0 0 1]
 NumCoronalSlices: []

 Register Multimodal Medical Image Volumes with Spatial Referencing

4-15

 NumSagittalSlices: []
 NumTransverseSlices: []
 PlaneMapping: ["unknown" "unknown" "unknown"]
 Modality: "unknown"
 WindowCenters: []
 WindowWidths: []

Verify that the new medicalVolume object contains CT voxel data that is aligned with the MRI image
by using imshowpair.

figure
imshowpair(movingRegisteredVolume.Voxels(:,:,centerFixed(3)), fixedMRIVoxels(:,:,centerFixed(3)))
title("Axial Slice of Registered Volume")

See Also
imregmoment | medicalref3d | medicalVolume

Related Examples
• “Medical Image Registration” on page 4-5

4 Image Preprocessing and Augmentation

4-16

Medical Image Labeling

• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
• “Collaborate on Multi-Labeler Medical Image Labeling Projects” on page 5-19

5

Label 2-D Ultrasound Series Using Medical Image Labeler

This example shows how to label 2-D image data using the Medical Image Labeler app. The
Medical Image Labeler app provides manual, semi-automated, and automated tools for labeling 2-D
medical image data. This example labels the left ventricle in an echocardiogram ultrasound image
series.

Open the Medical Image Labeler

Open the Medical Image Labeler app from the Apps tab on the MATLAB® toolstrip, under Image
Processing and Computer Vision. You can also load the app by using the medicalImageLabeler
command.

Create New Image Labeling Session

To start a new 2-D labeling session, on the app toolstrip, click New Session and select New Image
session (2-D). In the Create a new session folder dialog box, specify a location in which to save the
new session folder by entering a path or selecting Browse and navigating to your desired location. In
the New Session Folder dialog box, specify a name for the folder for this labeling session. Then, select
Create Session.

5 Medical Image Labeling

5-2

Load Image Data into Medical Image Labeler

To load an image into the Medical Image Labeler app, on the app toolstrip, click Import Data.
Then, under Data, select From File. Browse to the location of
heartUltrasoundSequenceVideo.dcm in the same directory as this example file. For an image
session, the imported data file must be a single DICOM or NIfTI file containing a 2-D image or a
series of 2-D images related by time.

The name of the imported image is visible in the Data Browser pane. The no labels symbol next
to the file name indicates that the image file does not contain any pixel labels. You can import
multiple 2-D image files into an image session. All files imported into a single app session must label
the same regions of interest, such as tumor or ventricle, and are exported together as one
groundTruthMedical object.

Explore the Image Series

The Medical Image Labeler app displays the imported image in the Slice pane. By default, the app
displays the middle frame in the ultrasound series. You can change the displayed frame by using the
scroll bar at the bottom of the Slice pane, or you can click the pane and then press the left and right
arrow keys. The app displays the current frame number out of the total number of frames, such as
58/116. You can zoom in on the current frame using the mouse scroll wheel or the zoom controls that
appear when you pause on the Slice pane.

Explore the echocardiogram image series to identify the left ventricle. The annotated image shows
the approximate outline of the ventricle to label. Note that all labels in this example have been
created for illustrative purposes only and have not been verified by a clinical professional.

 Label 2-D Ultrasound Series Using Medical Image Labeler

5-3

Create Label Definitions

A label definition specifies the name, color, and numeric index of a label. In the Label Definitions
pane, select Create Label Definition to create a label with the default name Label1. To change the
name of the label, click the label and enter a new name. The label name must be a valid MATLAB
variable name with no spaces. For this example, specify the name of the label as LeftVentricle. To
change the default color associated with the label, click the colored square in the label identifier and
select a color from the Color dialog box.

Use Drawing Tools to Label Regions in Image

To assign pixels to the LeftVentricle label, click the LeftVentricle label in the Label
Definitions pane. You can use the tools on the Draw tab in the app toolstrip to define the region. You
can choose from the Freehand, Assisted Freehand, Polygon, Paint Brush, and Trace Boundary
tools. Label frame 1. When you add the label, the app adds a bar above the slider, using the color
associated with the label, to indicate which frames you have labeled.

5 Medical Image Labeling

5-4

In addition to the drawing tools, you can add or refine label regions using the tools in the Automate
tab of the app toolstrip. The app provides automation algorithms including Active Contours,
Adaptive Threshold, Dilate, and Erode. To apply an algorithm, click Algorithm Parameters to
adjust settings, if applicable, and click Run. You can also specify a custom range of frames to process
by specifying a Start frame and an End frame.

Use Interpolation to Speed Up Labeling

You can move through the image series and draw labels frame-by-frame, but the Medical Image
Labeler app also provides interpolation tools in the Draw tab that can help you label an object
between frames. Interpolation is most suitable between frames where the region of interest has a
similar shape and size. In an echocardiogram, the ventricle experiences cycles of contraction, during
which the ventricle rapidly changes in shape, and relaxation, during which the ventricle is relatively
still. Therefore, you can most effectively use interpolation between the start and end of a relaxation
period, such as between frames 20 and 38.

To use interpolation, you must first manually label a region in two frames. Label the ventricle in
frame 20 and frame 38. If the Auto Interpolate button is not active, make sure the labeled region is
selected by clicking Select Drawn Region in the app toolstrip and selecting the labeled region.

 Label 2-D Ultrasound Series Using Medical Image Labeler

5-5

Click Auto Interpolate. The app automatically labels the ventricle in the intermediate frames. The
app adds bars above the slider to indicate all the frames that have labeled pixels, which now appears
as a solid bar from frame 20 to frame 38.

Alternatively, after labeling an ROI on two frames, you can click Manually Interpolate. With this
option, the app opens the Manually Interpolate dialog box. Select the two regions between which you
want to interpolate, Region One and Region Two. To select the first region, use the slider at the
bottom of the dialog box to navigate to frame 20, and then click inside the labeled ventricle. To select
the second region, click Region Two, navigate to frame 38, and click inside the labeled ventricle.
After selecting both regions, click Run to interpolate the label in the intermediate frames.

5 Medical Image Labeling

5-6

After using interpolation, check the individual frames to see if the interpolation created satisfactory
labels. You can manually correct labels using the Paint Brush and Eraser tools. Alternatively, you
can refine the labels using one of the tools in the Automate tab. For example, you can use Active
Contours to grow an ROI in a frame where it does not fill the full area of the ventricle. You can also
undo the interpolation and try interpolating across fewer frames to improve results.

Modify Labels

To refine drawn labels, you can remove label data from individual pixels, from individual frames
within an image series, from an entire image, or from the whole labeling session.

• Remove labels from individual pixels — In the Draw tab, use the Eraser tool.
• Remove labels from one connected region in a frame — Click Select Drawn Region and, in the

Slice pane, select the region from which you want to remove labels. Press Delete, or right-click
and select Delete, to remove labels from the region.

• Remove all labels from a frame — Right-click anywhere on the frame and select Select All. Press
Delete, or right-click and select Delete, to remove all labels from the frame.

 Label 2-D Ultrasound Series Using Medical Image Labeler

5-7

• Remove all labels from an image series — Right-click the file name of the image series in the Data
Browser and select Remove Labels. Removing labels from an image removes all pixel labels for
all label definitions within the file.

• Remove a label from all images within the app session — In the Label Definitions pane, right-
click the label name and select Delete. This deletes the label from the groundTruthMedical
object in the session folder, and removes all pixel labels for the deleted label name in all images in
the session.

Apply Custom Automation Algorithm

You can add a custom automation algorithm to use in the app. On the Automate tab, click Add
Algorithm. Import an existing algorithm by selecting From File, or create a new algorithm using the
provided function or class template.

Under Slice-Based, select the New option and click Function Template to create a new function
that operates on each 2-D image frame. The app opens the template in the MATLAB editor. Replace
the sample code in the template with the code for your algorithm. Your function must accept two
arguments: each frame as a separate image, and a mask. Your function must also return a mask
image.

When you are done editing the template, save the file. The Medical Image Labeler app
automatically creates a button in the Automate tab of the toolstrip for your function. To test your
function, select it and click Run. By default, the app applies the function to only the current frame.

After testing your function on a single frame, you can run it on all of the frames, or a subset of the
frames. You can run it from the current frame to the end (the highest numbered frame) or from the
current frame back to the beginning (frame 1). You can also specify a range of frames by specifying
the starting frame and the ending frame.

Export Ground Truth Data

For this example, the labels for heartUltrasoundSequenceVideo.dcm are complete when you
have labeled the ventricle in each frame. The app automatically assigns a value of 0 to unlabeled
pixels in the label images saved to the session folder, so you do not need to label the background
manually.

The Medical Image Labeler app automatically saves a groundTruthMedical object as a MAT file
in the session folder. You can also export a groundTruthMedical object, saved as a MAT file, to an
alternate file location from the app. On the Home tab, click Export and, under Ground Truth, select
To File.

You can load the exported MAT file into the MATLAB workspace using the load function. The
properties of the groundTruthMedical object, gTruthMed, contain information about the image
data source, label definitions, and location of the saved label images. Display information about the
object and each of its properties using these commands.

• gTruthMed — Display the properties of the groundTruthMedical object.

5 Medical Image Labeling

5-8

• gTruthMed.DataSource — Location of the source of the unlabeled medical images and image
series.

• gTruthMed.LabelDefinitions — Table of information about label definitions.
• gTruthMed.LabelData — Locations of the saved, labeled images.

See Also
Medical Image Labeler | groundTruthMedical

Related Examples
• “Get Started with Medical Image Labeler” on page 1-10
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10

 Label 2-D Ultrasound Series Using Medical Image Labeler

5-9

Label 3-D Medical Image Using Medical Image Labeler

This example shows how to label 3-D image data using the Medical Image Labeler app. The Medical
Image Labeler app provides manual, semi-automated, and automated tools for labeling 3-D medical
image data. This example segments a chest CT volume to label a lung tumor region.

Download Data to Label

This example labels chest CT data from a subset of the Medical Segmentation Decathlon data set [1
on page 5-18]. The size of the subset of data is approximately 76 MB. Download the
MedicalVolumNIfTIData.zip file from the MathWorks® website, then unzip the file.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeNIfTIData.zip");
filepath = fileparts(zipFile);
unzip(zipFile,filepath)
dataFolder = fullfile(filepath,"MedicalVolumeNIfTIData");

Open the Medical Image Labeler

Open the Medical Image Labeler app from the Apps tab on the MATLAB® toolstrip, under Image
Processing and Computer Vision. You can also load the app by using the medicalImageLabeler
command.

5 Medical Image Labeling

5-10

Create New Volume Labeling Session

To start a new 3-D labeling session, on the app toolstrip, click New Session and select New Volume
session (3-D). In the Create a new session folder dialog box, specify a location in which to save
the new session folder by entering a path or selecting Browse and navigating to your desired
location. In the New Session Folder dialog box, specify a name for the folder for this labeling
session. Then, select Create Session.

Load Image Data into Medical Image Labeler

To load an image into the Medical Image Labeler app, on the app toolstrip, click Import Data.
Then, under Data, select From File. Browse to the location where you downloaded the data,
specified by the dataFolder workspace variable, and select the file lung_027.nii.gz. For a
Volume Session, the imported data file can be a single DICOM or NIfTI file containing a 3-D image
volume, or a directory containing multiple DICOM files corresponding to a single image volume.

The name of the imported image is visible in the Data Browser pane. The no labels symbol next
to the file name indicates that the volume does not contain any pixel labels. You can import multiple
3-D image files into a Volume Session. All files imported into a single app session must label the
same regions of interest, such as tumor or lung, and are exported together as one
groundTruthMedical object. Import the other file in the download location, lung_043.nii.gz.

 Label 3-D Medical Image Using Medical Image Labeler

5-11

Explore the Image Volume

The Medical Image Labeler app displays a 3-D rendering of the scan in the 3-D Volume pane, and
displays anatomical slice planes in the Transverse, Sagittal, and Coronal panes. You can toggle the
visibility of the volume display using the Show Volume button on the Home tab of the app toolstrip.

By default, the app displays the center slice in each slice plane. You can change which slice is
displayed by using the scroll bar at the bottom of a slice pane, or you can click the pane and then
press the left and right arrow keys. The app displays the current slice number out of the total number
of slices, such as 132/264, for each slice pane. The app also displays anatomical display markers
indicating the anterior (A), posterior (P), left (L), right (R), superior (S), and inferior (I) directions. You
can zoom in on the current slice pane using the mouse scroll wheel or the zoom controls that appear
when you pause on the slice pane.

By default, the app displays the scan using the Radiological display convention, with the left side of
the patient on the right side of the image. To display the left side of the patient on the left side of the
image, on the app toolstrip, click Display Convention and select Neurological.

You can adjust the brightness and contrast used to display grayscale image data by using the

Window Level tool in the Home tab of the app toolstrip. First, on the app toolstrip, select .
Then, click and hold in any of the slice panes, and drag up and down to increase and decrease the
brightness, respectively, or left and right to increase and decrease the contrast. The updated window

bounds are displayed in the app toolstrip under Window Bounds. Click to deactivate the
tool. Changing the display window does not modify the image data.

With lung_027.nii.gz selected in the Data Browser pane, explore the chest volume to identify
the tumor region you want to label. The tumor is visible between slices 78 and 105 in the Transverse
slice pane.

5 Medical Image Labeling

5-12

Create Label Definitions

A label definition specifies the name, color, and numeric index of a label. In the Label Definitions
pane, select Create Label Definition to create a label with the default name Label1. To change the
name of the label, double-click on the label and type in a new name. The label name must be a valid
MATLAB® variable name with no spaces. For this example, specify the name of the label as tumor.
To change the default color associated with the label, double-click on the colored square in the label
identifier and select a color from the Color dialog box.

Use Drawing Tools to Label Regions in Image

Click on the tumor label in the Label Definitions pane to assign pixels to the tumor label. You can
use the tools on the Draw tab in the app toolstrip to define the region. You can choose from the
Freehand, Assisted Freehand, Polygon, Paint Brush, and Trace Boundary tools. This example
uses the Paint Brush tool, with Paint by Superpixels enabled, to label the tumor, but you can use
any of the drawing tools. You can draw labels in the Transverse, Sagittal, or Coronal slice panes.
Label slice 78. When you add the label, the app adds a bar above the slider, using the color associated
with the label, to indicate which slices you have labeled.

 Label 3-D Medical Image Using Medical Image Labeler

5-13

In addition to the drawing tools, you can add or refine label regions using the tools in the Automate
tab of the app toolstrip. The app provides slice-based automation algorithms including Active
Contours, Adaptive Threshold, Dilate, and Erode, as well as volume-based algorithms including
Filter and Threshold, Smooth Edges, and Otsu's Threshold. To apply a slice-based algorithm,
click Algorithm Parameters to adjust settings if applicable, select an option from the Slice
Direction list, and click Run. You can also specify a custom range of slices to process by specifying a
Start slice and an End slice.

Use Interpolation to Speed Up Labeling

You can move through the image volume and draw labels slice-by-slice. The Medical Image Labeler
app also provides interpolation tools in the Draw tab that can help with labeling an object between
slices.

To use interpolation, you must first manually label a region on two slices. You have already labeled
the tumor in slice 78. Use the same process to label the tumor in slice 83. If the Auto Interpolate
button is not active, make sure the labeled region is selected by clicking Select Drawn Region in
the app toolstrip and selecting the labeled region.

Click Auto Interpolate. The app automatically labels the tumor in the intermediate slices. The app
adds bars above the slider to indicate all the slices that have labeled pixels, which now appears as a
solid bar from slice 78 to slice 83.

Alternatively, after labeling an ROI on two slices, you can click Manually Interpolate. With this
option, the app opens the Manually Interpolate dialog box. Select the two regions between which you

5 Medical Image Labeling

5-14

want to interpolate, Region One and Region Two. To select the first region, use the slider at the
bottom of the dialog box to navigate to slice 78, and then click inside the labeled tumor. To select the
second region, click Region Two, navigate to slice 83, and click inside the labeled tumor. After
selecting both regions, click Run to interpolate the label in the intermediate slices.

After using interpolation, check the individual slices to see if the interpolation created satisfactory
labels. You can manually correct labels using the Paint Brush and Eraser tools. Alternatively, you
can refine the labels using one of the tools in the Automate tab. For example, you can use Active
Contours to grow an ROI in a slice where it does not fill the full area of the tumor. You can also undo
the interpolation and try interpolating across fewer slices to improve results.

Visualize and Modify Labels

As you draw labels, you can view them as an overlay in the 3-D Volume pane. In the warning
message at the top of the 3-D Volume pane, click Update. Note that Update is only available after
you update the label data in a slice pane. To adjust the opacity of all labels in the session, in the
Home tab of the app toolstrip, adjust the Label Opacity slider. To toggle the visibility of an
individual label, in the Label Definitions pane, click the eye symbol next to the label name.

 Label 3-D Medical Image Using Medical Image Labeler

5-15

To refine drawn labels, you can remove label data from individual pixels, from individual slices within
an image, from an entire image, or from the whole labeling session.

• Remove labels from individual pixels — In the Draw tab, use the Eraser tool.
• Remove labels from one connected region in a slice — Click Select Drawn Region and, in the

slice pane, select the region from which you want to remove labels. Press Delete, or right-click
and select Delete, to remove labels from the region.

• Remove all labels from a slice — Right-click anywhere on the slice and select Select All. Press
Delete, or right-click and select Delete, to remove all labels from the slice.

• Remove all labels from an image volume — Right-click the file name of the image volume in the
Data Browser and select Remove Labels. Removing labels from an image volume removes all
pixel labels for all label definitions within the file.

• Remove a label from all images within the app session — In the Label Definitions pane, right-
click the label name and select Delete. This deletes the label from the groundTruthMedical
object in the session folder, and removes all pixel labels for the deleted label name in all images in
the session.

Apply Custom Automation Algorithm

You can add a custom automation algorithm to use in the app. On the Automate tab, click Add
Algorithm. Import an existing algorithm by selecting From File, or create a new algorithm using the
provided function or class template.

For this example, under Slice-Based, select the New option and click Function Template to create
a new function that operates on each 2-D image slice. The app opens the template in the MATLAB
editor. Replace the sample code in the template with code that you want to use. Your function must
accept two arguments: each slice as a separate image, and a mask. Your function must also return a
mask image.

When you are done editing the template, save the file. The Medical Image Labeler app
automatically creates a button in the Automate tab toolstrip for your function. To test your function,
select an option from the Slice Direction list and click Run. By default, the app applies the function
to only the current slice.

5 Medical Image Labeling

5-16

After testing your function on a single slice, you can run it on all of the slices, or a subset of the
slices, in the selected direction. You can run it from the current slice to the end (the highest
numbered slice) or from the current slice back to the beginning (slice 1). You can also specify a range
of slices by specifying the starting slice and the ending slice.

Label Next Image Volume

For this example, the labels for lung_001.nii.gz are complete when you have labeled each slice of
the tumor. Medical Image Labeler automatically assigns a value of 0 to unlabeled pixels in the label
images saved to the session folder, so you do not need to label the background manually.

To move to the next volume, select lung_043.nii.gz in the Data Browser pane. Repeat the
labeling process to draw labels on the tumor region in this volume.

Export Ground Truth Data

The Medical Image Labeler app automatically saves a groundTruthMedical object as a MAT file
in the session folder. You can also export a groundTruthMedical object, saved as a MAT file, to an

 Label 3-D Medical Image Using Medical Image Labeler

5-17

alternate file location from the app. One the Home tab, click Export and, under Ground Truth,
select To File.

You can load the exported MAT file into the MATLAB workspace using the load function. The
properties of the groundTruthMedical object, gTruthMed, contain information about the image
data source, label definitions, and location of the saved label images. Display information about the
object and each of its properties using these commands.

• gTruthMed — Display the properties of the groundTruthMedical object.
• gTruthMed.DataSource — Location of the source of the unlabeled medical volumes.
• gTruthMed.LabelDefinitions — Table of information about label definitions.
• gTruthMed.LabelData — Locations of the saved, labeled images.

References

[1] Medical Segmentation Decathlon. "Lung." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/.

The Lung data set is provided by the Medical Segmentation Decathlon under the CC-BY-SA 4.0
license. All warranties and representations are disclaimed. See the license for details. This example
uses a subset of the original data set consisting of two CT volumes. The labels shown in this example
were created for illustration purposes and have not been verified by a clinician.

See Also
Medical Image Labeler | groundTruthMedical

Related Examples
• “Get Started with Medical Image Labeler” on page 1-10
• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2

5 Medical Image Labeling

5-18

http://medicaldecathlon.com
http://medicaldecathlon.com

Collaborate on Multi-Labeler Medical Image Labeling Projects
This page shows how to work with a multi-person team to label large medical image data sets using
the Medical Image Labeler app. Use this workflow to label a data set that consists of all 2-D images
or all 3-D images and has the same set of target labels (for example tumor, lung, and chest).

A labeling team consists of a project manager, individual labelers, and one or more reviewers. The
project manager creates the label definitions, assigns the images to be labeled by each labeler, and
collects and compiles the labeled data. The original intensity images to be labeled are data source
images. The labelers label the data source images using the label definitions provided by the project
manager, request feedback from the reviewer, and send approved labels to the project manager. The
reviewer, who can also be the project manager, checks labeled images and provides feedback to the
labelers. This figure illustrates the overall workflow and responsibilities of each role.

The multi-person labeling process consists of these steps:

1 “Create Label Definitions and Assign Data to Labelers (Project Manager)” on page 5-20
2 “Label Data and Publish Labels for Review (Labeler)” on page 5-21
3 “Export Ground Truth Data and Send to Project Manager (Labeler)” on page 5-23
4 “Inspect Labeled Images (Reviewer)” on page 5-23
5 “Collect, Merge, and Create Training Data (Project Manager)” on page 5-24

 Collaborate on Multi-Labeler Medical Image Labeling Projects

5-19

Create Label Definitions and Assign Data to Labelers (Project
Manager)
Create Medical Image Labeler Session

1 Open the Medical Image Labeler app from the Apps tab on the MATLAB toolstrip, or by using
the medicalImageLabeler command.

2 In the app toolstrip, click New Session. If the data set is 2-D, select New Image session (2-D).
If the data set is 3-D, select New Volume session (3-D).

Create Label Definitions

1 Click Create Label Definition in the Label Definitions pane.
2 Click on the label to change the default name. The label name must be a valid MATLAB®

variable name with no spaces. For details about valid variable names, see “Variable Names”.
3 To change the color associated with the label, click the colored square in the label identifier and

select a color from the Color dialog box.
4 Click Create Label Definition to create additional labels. Create all of the labels required for

the labeling project. When labels are nested within one another, such as tumors within an organ
within the chest cavity, create the labels in order from outermost to innermost (chest, then
lung, then tumor).

5 Click Export and, under Label Definitions, select To File to export the label definitions to a
MAT file.

Distribute Labeling Assignments

Assign each labeler a subset of images in the data set to label. For example, for a data set of 300
chest CT scans, labeler 1 might label the tumor, lung, and chest cavity in scans 1–100, and labeler
2 might label the tumor, lung, and chest cavity in scans 101–200. To ensure you can merge the
ground truth data after labeling, you must assign each labeler a unique set of data source images to
label, and use the same label definitions for each set. Send this information to each labeler:

• Label definitions, saved as a MAT file.
• List of data source files to label. Each labeler must have access to their assigned images, either in

a shared network location or on their local machine.

5 Medical Image Labeling

5-20

Label Data and Publish Labels for Review (Labeler)
Create Medical Image Labeler session

1 Open the Medical Image Labeler app from the Apps tab on the MATLAB toolstrip, or by using
the medicalImageLabeler command.

2 In the app toolstrip, click New Session. If the data set is 2-D, select New Image session (2-D).
If the data set is 3-D, select New Volume session (3-D).

Import Label Definitions File

1 On the app toolstrip, click Import.
2 Under Import Label Definitions, select From File.

3 Select the label definitions MAT file provided by the project manager. The imported labels appear
in the Label Definitions pane.

 Collaborate on Multi-Labeler Medical Image Labeling Projects

5-21

Import Data to Label

Load the data source images assigned to you by the project manager into the app. To load an image,
click Import on the app toolstrip and select an option under Data. Select one or more files to import
in the Import Image dialog box.

• For a volume session, you can import an image from a file or from a directory of DICOM files
corresponding to one volume.

• For an image session, you can import an image or image series from a file.

You can check that the app successfully imported the files by reading the list of filenames in the Data
Browser pane.

Label Images

Select an image in the Data Browser to begin labeling. The no labels symbol next file names in
the Data Browser indicates which image files have not been labeled.

Draw pixel labels using the labels in the Label Definitions pane. For an example showing how to
label 3-D medical images, see “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10.
For an example showing how to label a 2-D image series, see “Label 2-D Ultrasound Series Using
Medical Image Labeler” on page 5-2. The labels are saved as label images, which contain a mask of
the drawn labels for a data source image.

Publish Label Overlay Images for Review

To get feedback from the reviewer, you can publish and share label overlay images, which show the
data source image with its corresponding label image as an overlay. You can publish label overlay
images as individual PNG files or as a single PDF, which the reviewer can inspect without opening
MATLAB. To publish label overlay images, follow these steps:

1 The published images match the current settings in the app. Configure the app display settings
as desired by using these steps:

a You can change the visibility of an individual label by clicking the icon next to the label
name in the Label Definitions pane.

b On the Home tab of the app toolstrip, use the Label Opacity slider to set the transparency
of the labels.

c On the Home tab of the app toolstrip, use the Window Level tool to set the contrast of 2-D
slice images.

d To include a 3-D snapshot in the published images, on the Home tab of the app toolstrip,
select Show Volume. The 3-D snapshot matches the current rotation, zoom, and display
markers in the 3-D Volume pane. On the Home tab, click Display Markers to change the
visibility of the scale bar and orientation axes display markers.

2 In the Data Browser, select the data source image file for which you want to publish label
overlay images. You can publish label overlay images for only one data source at a time.

3 On the app toolstrip, click Publish to open the Publish pane.

5 Medical Image Labeling

5-22

4 Under Publish Format, select either Images or PDF. Selecting Images publishes individual
PNG files for each frame of an image series, or slice of a volume. Selecting PDF publishes one
PDF file for the entire image file.

5 Specify the Slices information. For an image session, you can specify a range of slices for a
multi-frame image sequence.

For a volume session, select the Slice Direction (coronal, sagittal, or transverse) along which to
publish images and select either All Slices or Range. If you select Range, specify a range of
slices. To include a 3-D snapshot, select Include 3-D volume Snapshot.

6 Click Publish and specify the export location.

Inspect Labeled Images (Reviewer)
Collect published label overlay images from each labeler. You can open the published PDF or PNG
files using a PDF or image viewer without using MATLAB. Inspect the labeled images, and send
feedback to the labelers if necessary. The labelers can update the labels and publish a new set of
images for additional review. When the labels are satisfactory, the labeler exports the ground truth
data and sends it to the project manager.

Export Ground Truth Data and Send to Project Manager (Labeler)
Export Ground Truth Object

When you receive approval from the reviewer, export the labeled data as a groundTruthMedical
object to share with the project manager. On the Home tab, click Export and, under Ground Truth,
select To File.

 Collaborate on Multi-Labeler Medical Image Labeling Projects

5-23

Send Ground Truth Data to Project Manager

Send these files to the project manager:

• MAT file containing the groundTruthMedical object.
• Label images containing the label masks for the data source images specified in the ground truth

object. You can access the complete path to the label images in the LabelData property of the
exported groundTruthMedical object. Access the LabelData property by loading the ground
truth MAT file into the MATLAB workspace by using the load function. Share a copy of the label
images with the project manager by sending them directly or by saving a copy in a shared network
location.

Collect, Merge, and Create Training Data (Project Manager)
Collect Labeled Ground Truth Data

Collect these files from each labeler:

• MAT file containing a groundTruthMedical object.
• Label images containing the label masks for the data source images specified in the

groundTruthMedical object.

You can load each object into the workspace by using the load function. Because the Medical
Image Labeler always saves the ground truth object as gTruthMed in the exported MAT file, you
must specify unique variable names when loaded each file to avoid overwriting data. For example,
this code loads ground truth objects from two exported MAT files, gTruth1.mat and gTruth2.mat,
that each contain a groundTruthMedical object, gTruthMed.

matFile1 = load("gTruth1.mat");
gTruthMed1 = matFile1.gTruthMed;
matFile2 = load("gTruth2.mat");
gTruthMed2 = matFile2.gTruthMed;

The groundTruthMedical object contains file paths in the DataSource and LabelData properties
that point to the location of the data source images and the label images, respectively, on the local
machine of the associated labeler.

Update File Paths

To merge the ground truth objects and create training data, you must update each ground truth
object to point to the data source and label image file locations on your machine. Even if the files are
saved in a shared network location, if a labeler maps a different drive letter to the shared network
folder, the file path can be incorrect.

To update these paths, use the changeFilePaths object function. Specify the ground truth object as
an input argument to this function. If the directory paths have changed, but the filenames have not,
specify a string vector containing the folder names for the old and new paths. The function updates
all file paths in the groundTruthMedical object at the specified original path. The function returns
any paths that it is unable to resolve. For example, this code shows how to change the drive letter for
a directory.

alternativePaths = ["C:\Shared\ImgFolder","D:\Shared\ImgFolder"];
unresolvedPaths = changeFilePaths(gTruthMed1,alternativePaths);

5 Medical Image Labeling

5-24

If the filenames also changed, specify a string array of old and new file paths. For example, this code
shows how to change the drive letter for individual files, and how to append a suffix to each filename.

alternativePaths = ...
{["C:\Shared\ImgFolder\Img1.png","D:\Shared\ImgFolder\Img1_new.png"], ...
["C:\Shared\ImgFolder\Img2.png","D:\Shared\ImgFolder\Img2_new.png"], ...
.
.
.
["C:\Shared\ImgFolder\ImgN.png","D:\Shared\ImgFolder\ImgN_new.png"]};
unresolvedPaths = changeFilePaths(gTruthMed1,alternativePaths);

By default, changeFilePaths updates both the data source and the label image file paths. To
update the paths stored in the DataSource and LabelData properties separately, use the
propertyName argument.

Merge Ground Truth Data

Merge the updated groundTruthMedical objects into one object by using the merge object
function. For example, this code merges two objects, gTruthMed1 and gTruthMed2.

gTruthMerged = merge(gTruthMed1,gTruthMed2);

Create Training Data

You can use the merged labeled ground truth data to train a semantic segmentation network. To
create training data, load the data source images into an imageDatastore. Load the label images
into a pixelLabelDatastore. For more details about creating training data for semantic
segmentation from a groundTruthMedical object, see “Create Datastores for Medical Image
Semantic Segmentation” on page 6-2.

See Also
groundTruthMedical | changeFilePaths | merge

Related Examples
• “Get Started with Medical Image Labeler” on page 1-10
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2

 Collaborate on Multi-Labeler Medical Image Labeling Projects

5-25

Medical Image Segmentation

• “Create Datastores for Medical Image Semantic Segmentation” on page 6-2
• “Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network”

on page 6-5
• “Create Training Data for 3-D Medical Image Semantic Segmentation” on page 6-9
• “Segment Lungs from CT Scan Using Pretrained Neural Network” on page 6-14
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 6-24
• “Breast Tumor Segmentation from Ultrasound Using Deep Learning” on page 6-32

6

Create Datastores for Medical Image Semantic Segmentation
Semantic segmentation deep learning networks segment a medical image by assigning a class label,
such as tumor or lung, to every pixel in the image. To train a semantic segmentation network, you
must have a collection of images, or data sources, and a collection of label images that contain labels
for the pixels in the data source images. Manage training data for semantic segmentation by using
datastores:

• Load data source images by using an imageDatastore object.
• Load pixel label images by using a pixelLabelDatastore object.
• Pair data source images and pixel label images by using a CombinedDatastore or a

randomPatchExtractionDatastore object.

Medical Image Ground Truth Data
You can use the Medical Image Labeler app to label 2-D or 3-D medical images to generate training
data for semantic segmentation networks. The app stores labeling results in a groundTruthMedical
object, which specifies the filenames of data source and pixel label images in its DataSource and
LabelData properties, respectively. The table shows how a groundTruthMedical object formats
the data source and label image information for 2-D versus 3-D data.

Type of Data Data Source Format Label Data Format
2-D medical images or
multiframe 2-D image series

The DataSource property
contains an ImageSource
object that specifies 2-D images
or image series in one of these
formats:

• Single DICOM file.
• Single NIfTI file.

Note A groundTruthMedical
object can specify a combination
of 2-D DICOM and NIfTI data
sources.

The LabelData property
contains a string array. Each
element specifies the filename
of the label image for the
corresponding data source.

• 2-D label images are MAT
files, regardless of the data
source file format.

• If a data source has no
labels, the corresponding
element of LabelData is an
empty string, "".

6 Medical Image Segmentation

6-2

Type of Data Data Source Format Label Data Format
3-D medical image volumes The DataSource property

contains a VolumeSource
object that specifies 3-D image
volumes in one of these formats:

• Directory of DICOM files
corresponding to one
volume.

• Single DICOM file.
• Single NIfTI file.
• Single NRRD file.

Note A groundTruthMedical
object can specify a combination
of 3-D DICOM, NIfTI, and NRRD
data sources.

The LabelData property
contains a string array. Each
element specifies the filename
of the label image for the
corresponding data source.

• 3-D label images are NIfTI
files, regardless of the data
source file format.

• If a data source has no
labels, the corresponding
element of LabelData is an
empty string, "".

Datastores for Semantic Segmentation
You can perform medical image semantic segmentation using 2-D or 3-D deep learning networks. A 2-
D network accepts 2-D input images and predicts segmentation labels using 2-D convolution kernels.
The input images can be one of these sources:

• Images from 2-D modalities, such as X-ray.
• Individual frames extracted from a multiframe 2-D image series, such as an ultrasound video.
• Individual slices extracted from a 3-D image volume, such as a CT or MRI scan.

A 3-D network accepts 3-D input images and predicts segmentation labels using 3-D convolution
kernels. The input images are 3-D medical volumes, such as entire CT or MRI volumes.

The benefits of 2-D networks include faster prediction speeds and lower memory requirements.
Additionally, you can generate many 2-D training images from one image volume or series. Therefore,
fewer scans are required to train a 2-D network that segments a volume slice-by-slice versus training
a fully 3-D network. The major benefit of 3-D networks is that they use information from adjacent
slices or frames to predict segmentation labels, which can produce more accurate results.

• For an example that shows how to create datastores that contain 2-D ultrasound frames, see
“Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network” on
page 6-5.

• For an example that shows how to create, preprocess, and augment 3-D datastores for
segmentation, see “Create Training Data for 3-D Medical Image Semantic Segmentation” on page
6-9.

See Also
groundTruthMedical | ImageSource | VolumeSource | imageDatastore |
pixelLabelDatastore | CombinedDatastore | randomPatchExtractionDatastore

 Create Datastores for Medical Image Semantic Segmentation

6-3

Related Examples
• “Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network”

on page 6-5
• “Create Training Data for 3-D Medical Image Semantic Segmentation” on page 6-9
• “Collaborate on Multi-Labeler Medical Image Labeling Projects” on page 5-19

6 Medical Image Segmentation

6-4

Convert Ultrasound Image Series into Training Data for 2-D
Semantic Segmentation Network

This example shows how to create training data for a 2-D semantic segmentation network using a
groundTruthMedical object that contains a multiframe ultrasound image series. To train a
semantic segmentation network, you must have pairs of data source images and label images, stored
in an imageDatastore object and pixelLabelDatastore object, respectively. To train a 2-D
network using data from a multiframe image series, you must convert the series into individual
frames stored in separate files.

Create Ground Truth Object

You can export a groundTruthMedical object from the Medical Image Labeler app or create one
programmatically. For illustrative purposes, this example creates a groundTruthMedical object by
using the createGroundTruthMed2D helper function. The helper function is attached to this
example as a supporting file. The groundTruthMedical object references a multiframe
echocardiogram data source and its corresponding label image series. The data source and label
images are stored as a single DICOM file and MAT file, respectively.

gTruthMed = createGroundTruthMed2D;

Extract Data from Ground Truth Object

Extract the data source and label image filenames from the groundTruthMedical object.

dataSource = gTruthMed.DataSource.Source;
labelData = gTruthMed.LabelData;

Remove any data sources that are missing label images, if present.

labelsIdx = labelData ~= "";
dataSource = dataSource(labelsIdx);
labelData = labelData(labelsIdx);

Extract the label definitions from the groundTruthMedical object. Add a label definition for the
background region, corresponding to a pixel value of 0.

labelDefs = gTruthMed.LabelDefinitions;
labelDefs(2,:) = {"background",[0 1 0],0};

Convert Multiframe Series into 2-D Frames

The data source is a multiframe ultrasound image series stored in a single DICOM file. Convert the
DICOM file into individual 2-D images, stored as MAT files, by using the
convertImageSeriesToFrames supporting function. The supporting function is defined at the end
of this example.

newDataSource = convertImageSeriesToFrames(dataSource);
newDataSource = string(newDataSource);

The label data is a multiframe image series stored in a single MAT file. Convert each frame of the
image series into an individual MAT file by using the convertLabelSeriesToFrames supporting
function. The supporting function is defined at the end of this example.

newLabelData = convertLabelSeriesToFrames(labelData);

 Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network

6-5

Create Datastores

Load the individual MAT file data sources into an imageDatastore object.

imds = imageDatastore(newDataSource, ...
 ReadFcn=@readFramesLabels, ...
 FileExtensions=[".mat",".dcm"]);

Load the individual MAT file label images into a pixelLabelDatastore (Computer Vision Toolbox)
object. Use the label definitions from the groundTruthMedical object to map pixel values to
categorical labels in the datastore.

pxds = pixelLabelDatastore(cellstr(newLabelData),labelDefs.Name,labelDefs.PixelLabelID, ...
 ReadFcn=@readFramesLabels, ...
 FileExtensions=".mat");

Preview one image and its corresponding label. Display the labeled image by using the
labeloverlay function.

im = preview(imds);
label = preview(pxds);
imOverlay = labeloverlay(im,label);
imshow(imOverlay)

6 Medical Image Segmentation

6-6

Create a CombinedDatastore object that pairs each data source image with its corresponding label
image.

trainingData = combine(imds,pxds);

Supporting Functions

The convertImageSeriesToSlices function converts a multiframe DICOM image series, such as
ultrasound data, into individual 2-D frames stored in separate MAT files. The function returns a cell
array of the new MAT filenames.

function newDataSource = convertImageSeriesToFrames(labelDataSource)
% Create a data directory to store MAT files
dataFileDir = fullfile(pwd,"GroundTruthData");

if ~isfolder(dataFileDir)
 mkdir(dataFileDir)
end

image = medicalImage(labelDataSource);
data3d = image.Pixels;

% Assumption that time is the third dimension
numFrames = size(data3d,3);
newDataSource = cell(numFrames,1);

for frame = 1:numFrames
 data = squeeze(data3d(:,:,frame,:));
 [~,name,~] = fileparts(labelDataSource);
 matFileName = strcat(fullfile(dataFileDir,name),"_",num2str(frame),".mat");
 save(matFileName,"data");
 newDataSource{frame} = string(matFileName);
end

end

The convertLabelSeriesToFrames function converts a multiframe image series stored in a single
file into individual frames stored as separate MAT files. The function returns a cell array of the new
MAT filenames.

function newlabelData = convertLabelSeriesToFrames(labelSource)
% Create a label directory to store MAT files
labelFileDir = fullfile(pwd,"GroundTruthLabel");

if ~isfolder(labelFileDir)
 mkdir(labelFileDir)
end

labelData = load(labelSource);

% Assume that the third dimension contains frames taken at different times
numFrames = size(labelData.labels,3);
newlabelData = cell(numFrames,1);

[~,name,~] = fileparts(labelSource);
for frame = 1:numFrames
 data = squeeze(labelData.labels(:,:,frame,:));
 matFileName = strcat(fullfile(labelFileDir,name),"_",num2str(frame),".mat");

 Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network

6-7

 save(matFileName,"data");
 newlabelData{frame} = string(matFileName);
end

end

The readFramesLabels function reads data from the data variable of a MAT file.

function data = readFramesLabels(filename)
d = load(filename);
data = d.data;
end

See Also
groundTruthMedical | imageDatastore | pixelLabelDatastore | transform | combine

Related Examples
• “Label 2-D Ultrasound Series Using Medical Image Labeler” on page 5-2
• “Create Training Data for 3-D Medical Image Semantic Segmentation” on page 6-9

6 Medical Image Segmentation

6-8

Create Training Data for 3-D Medical Image Semantic
Segmentation

This example shows how to create training data for a 3-D semantic segmentation network using a
groundTruthMedical object that contains 3-D medical image data. This example also shows how to
transform datastores to preprocess and augment image and pixel label data.

Create Ground Truth Object

You can export a groundTruthMedical object from the Medical Image Labeler app or create one
programmatically.

This example creates a groundTruthMedical object by using the createGroundTruthMed3D
helper function. The helper function is attached to this example as a supporting file. The ground truth
object references three data sources, consisting of one chest CT volume stored as a directory of
DICOM files and two chest CT volumes stored as NIfTI files. The directory of DICOM files and its
label image are attached to this example as supporting files. The createGroundTruthMed3D
function downloads the NIfTI files and their label images from the MathWorks® website. The NIfTI
files are a subset of the Medical Segmentation Decathlon data set [1 on page 6-13], and have a total
file size of approximately 76 MB.

gTruthMed = createGroundTruthMed3D;

Extract Data from Ground Truth Object

Extract the data source and label image filenames from the groundTruthMedical object.

dataSource = gTruthMed.DataSource.Source;
labelData = gTruthMed.LabelData;

Remove data sources that are missing label images.

labelsIdx = labelData~="";
dataSource = dataSource(labelsIdx);
labelData = labelData(labelsIdx);

Extract the label definitions from the groundTruthMedical object. Add a label definition for the
background region, corresponding to a pixel value of 0.

labelDefs = gTruthMed.LabelDefinitions;
labelDefs(2,:) = {"background",[0 1 0],0};

Load Data Source Images into Image Datastore

A groundTruthMedical object can contain data sources stored as single DICOM, NIfTI, or NRRD
files, or as a directory of DICOM files. Because the imageDatastore object does not support reading
volumetric images from a directory of DICOM files, use the convertMultifileDICOMs supporting
function to search dataSource for data sources stored as a directory of DICOM files, and convert
any DICOM directories into single MAT files.

dataSource = convertMultifileDICOMs(dataSource);
dataSource = string(dataSource);

Load the updated data sources into an imageDatastore object. Specify a custom read function,
readMedicalVolumes, which is defined at the end of this example. The readMedicalVolumes

 Create Training Data for 3-D Medical Image Semantic Segmentation

6-9

function reads data from medical volumes stored as a single MAT file, DICOM file, or NIfTI file.
The .gz file extension corresponds to compressed NIfTI files.

imds = imageDatastore(dataSource, ...
 ReadFcn=@readMedicalVolumes, ...
 FileExtensions=[".mat",".dcm",".nii",".gz"]);

Load Label Images into Pixel Label Datastore

Load the label images into a pixelLabelDatastore (Computer Vision Toolbox) object using
niftiread as the read function.

pxds = pixelLabelDatastore(cellstr(labelData),labelDefs.Name,labelDefs.PixelLabelID, ...
 ReadFcn=@niftiread, ...
 FileExtensions=[".nii",".gz"]);

Preview one image volume and its label image.

vol = preview(imds);
label = preview(pxds);

Display one slice of the previewed volume by using the labeloverlay function. To better view the
intensity values of the CT slice with labeloverlay, rescale the image intensities to the range [0, 1].

volslice = vol(:,:,100);
volslice = rescale(volslice);
labelslice = label(:,:,100);
imOverlay = labeloverlay(volslice,labelslice);
imshow(imOverlay)

6 Medical Image Segmentation

6-10

Pair Image and Label Data

Create a CombinedDatastore object that pairs each data source image with its corresponding label
image.

trainingData = combine(imds,pxds);

Augment and Preprocess Training Data

Specify the input size of the target deep learning network.

targetSize = [300 300 60];

Augment the training data by using the transform function with custom operations specified by the
jitterImageIntensityAndWarp supporting function defined at the end of this example.

 Create Training Data for 3-D Medical Image Semantic Segmentation

6-11

augmentedTrainingData = transform(trainingData,@jitterImageIntensityAndWarp);

Preprocess the training data by using the transform function with custom preprocessing operations
specified by the centerCropImageAndLabel supporting function defined at the end of this example.
Depending on your application and network, your preprocessing workflow may require additional
steps, such as resampling or registration. For more information about preprocessing, see “Medical
Image Preprocessing” on page 4-2.

preprocessedTrainingData = transform(augmentedTrainingData, ...
 @(data)centerCropImageAndLabel(data,targetSize));

Supporting Functions

The convertMultifileDICOMs function reads a cell array of data source filenames, and converts
any data sources stored as a directory of DICOM files into a single MAT file.

function dataSource = convertMultifileDICOMs(dataSource)
numEntries = length(dataSource);
dataFileDir = fullfile(pwd,"GroundTruthData");

if ~isfolder(dataFileDir)
 mkdir(dataFileDir)
end

for idx = 1:numEntries
 currEntry = dataSource{idx};
 % Multi-file DICOMs
 if length(currEntry) > 1
 matFileName = fileparts(currEntry(1));
 matFileName = split(matFileName,filesep);
 matFileName = replace(strtrim(matFileName(end))," ","_");
 matFileName = strcat(fullfile(dataFileDir,matFileName),".mat");

 vol = medicalVolume(currEntry);
 data = vol.Voxels;

 save(matFileName,"data")
 dataSource{idx} = string(matFileName);
 end
end
end

The readMedicalVolumes function loads medical image volume data from a single MAT file, DICOM
file, or NIfTI file.

function data = readMedicalVolumes(filename)
[~,~,ext] = fileparts(filename);
if ext == ".mat"
 d = load(filename);
 data = d.data;
else
 vol = medicalVolume(filename);
 data = vol.Voxels;
end
end

6 Medical Image Segmentation

6-12

The jitterImageIntensityAndWarp function randomly adjusts the brightness, contrast, and
gamma correction of the data source image values and applies random geometric transformations
including scaling, reflection, and rotation to the data source and pixel label images.

function out = jitterImageIntensityAndWarp(data)
% Unpack original data.
I = data{1};
C = data{2};

% Apply random intensity jitter.
I = jitterIntensity(I,Brightness=0.3,Contrast=0.4,Gamma=0.2);

% Define random affine transform.
tform = randomAffine3d(Scale=[0.8 1.5],XReflection=true,Rotation=[-30 30]);
rout = affineOutputView(size(I),tform);

% Transform image and pixel labels.
augmentedImage = imwarp(I,tform,OutputView=rout);
augmentedLabel = imwarp(C,tform,OutputView=rout);

% Return augmented data.
out = {augmentedImage,augmentedLabel};
end

The centerCropImageAndLabel function crops the data source images and pixel labels to the input
size of the target deep learning network.

function out = centerCropImageAndLabel(data,targetSize)
 win = centerCropWindow3d(size(data{1}),targetSize);
 out{1} = imcrop3(data{1},win);
 out{2} = imcrop3(data{2},win);
end

References

[1] Medical Segmentation Decathlon. "Lung." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com/. The Medical Segmentation Decathlon data set is provided under the CC-BY-
SA 4.0 license. All warranties and representations are disclaimed. See the license for details.

See Also
groundTruthMedical | imageDatastore | pixelLabelDatastore | transform | combine

Related Examples
• “Label 3-D Medical Image Using Medical Image Labeler” on page 5-10
• “Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network”

on page 6-5

 Create Training Data for 3-D Medical Image Semantic Segmentation

6-13

http://medicaldecathlon.com
http://medicaldecathlon.com

Segment Lungs from CT Scan Using Pretrained Neural Network

This example shows how to import a pretrained ONNX™ (Open Neural Network Exchange) 3-D U-Net
[1 on page 6-22] and use it to perform semantic segmentation of the left and right lungs from a 3-D
chest CT scan. Semantic segmentation associates each voxel in a 3-D image with a class label. In this
example, you classify each voxel in a test data set as belonging to the left lung or right lung. For more
information about semantic segmentation, see “Semantic Segmentation” (Computer Vision Toolbox).

A challenge of applying pretrained networks is the possibility of differences between the intensity and
spatial details of a new data set and the data set used to train the network. Preprocessing is typically
required to format the data to match the expected network input and achieve accurate segmentation
results. In this example, you standardize the spatial orientation and normalize the intensity range of a
test data set before applying the pretrained network.

Download Pretrained Network

Specify the desired location of the pretrained network.

dataDir = fullfile(tempdir,"lungmask");
if ~exist(dataDir,"dir")
 mkdir(dataDir);
end

Download the pretrained network from the MathWorks® website by using the
downloadTrainedNetwork helper function. The helper function is attached to this example as a

6 Medical Image Segmentation

6-14

supporting file. The network on the MathWorks website is equivalent to the R231 model, available in
the LungMask GitHub repository [2 on page 6-22], converted to the ONNX format. The size of the
pretrained network is approximately 11 MB.

lungmask_url = "https://www.mathworks.com/supportfiles/medical/pretrainedLungmaskR231Net.onnx";
downloadTrainedNetwork(lungmask_url,dataDir);

Import Pretrained Network

Import the ONNX network as a function by using the importONNXFunction (Deep Learning
Toolbox) function. You can use this function to import a network with layers that the
importONNXNetwork (Deep Learning Toolbox) function does not support. The
importONNXFunction function requires the Deep Learning Toolbox™ Converter for ONNX Model
Format support package. If this support package is not installed, then importONNXFunction
provides a download link.

The importONNXFunction function imports the network and returns an ONNXParameters object
that contains the network parameters. When you import the pretrained lung segmentation network,
the function displays a warning that the LogSoftmax operator is not supported.

modelfileONNX = fullfile(dataDir,"pretrainedLungmaskR231Net.onnx");
modelfileM = "importedLungmaskFcn_R231.m";
params = importONNXFunction(modelfileONNX,modelfileM);

Function containing the imported ONNX network architecture was saved to the file importedLungmaskFcn_R231.m.
To learn how to use this function, type: help importedLungmaskFcn_R231.

Warning: Unable to import some ONNX operators or attributes. They may have been replaced by 'PLACEHOLDER' functions in the imported model function.

1 operator(s) : Operator 'LogSoftmax' is not supported with its current settings or in this context.

Open the generated function, saved as an M file in the current directory. The function contains these
lines of code that indicate that the unsupported LogSoftmax operator is replaced with a placeholder:

% PLACEHOLDER FUNCTION FOR UNSUPPORTED OPERATOR (LogSoftmax):
[Vars.x460, NumDims.x460] = PLACEHOLDER(Vars.x459);

In the function definition, replace the placeholder code with this code. Save the updated function as
lungmaskFcn_R231. A copy of lungmaskFcn_R231 with the correct code is also attached to this
example as a supporting file.

% Replacement for PLACEHOLDER FUNCTION FOR UNSUPPORTED OPERATOR (LogSoftmax):
Vars.x460 = log(softmax(Vars.x459,'DataFormat','CSSB'));
NumDims.x460 = NumDims.x459;

Save the network parameters in the ONNXParameters object params. Save the parameters in a new
MAT file.

save("lungmaskParams_R231","params");

Load Data

Test the pretrained lung segmentation network on a test data set. The test data is a CT chest volume
from the Medical Segmentation Decathlon data set [3 on page 6-22]. Download the
MedicalVolumNIfTIData ZIP archive from the MathWorks website, then unzip the file. The ZIP file

 Segment Lungs from CT Scan Using Pretrained Neural Network

6-15

contains two CT chest volumes and corresponding label images, stored in the NIfTI file format. The
total size of the data set is approximately 76 MB.

zipFile = matlab.internal.examples.downloadSupportFile("medical","MedicalVolumeNIfTIData.zip");
filePath = fileparts(zipFile);
unzip(zipFile,filePath)
dataFolder = fullfile(filePath,"MedicalVolumeNIfTIData");

Specify the file name of the first CT volume.

fileName = fullfile(dataFolder,"lung_027.nii.gz");

Create a medicalVolume object for the CT volume.

medVol = medicalVolume(fileName);

Extract and display the voxel data from the medicalVolume object.

V = medVol.Voxels;
volshow(V,RenderingStyle="GradientOpacity");

6 Medical Image Segmentation

6-16

Preprocess Test Data

Preprocess the test data to match the expected orientstion and intensity range of the pretrained
network.

Rotate the test image volume in the transverse plane to match the expected input orientation for the
pretrained network. The network was trained using data oriented with the patient bed at the bottom
of the image, so the test data must be oriented in the same direction. If you change the test data, you
need to apply an appropriate spatial transformation to match the expected orientation for the
network.

rotationAxis = [0 0 1];
volAligned = imrotate3(V,90,rotationAxis);

Display a slice of the rotated volume to check the updated orientation.

imshow(volAligned(:,:,150),[])

 Segment Lungs from CT Scan Using Pretrained Neural Network

6-17

Use intensity normalization to rescale the range of voxel intensities in the region of interest to the
range [0, 1], which is the range that the pretrained network expects. The first step in intensity
normalization is to determine the range of intensity values within the region of interest. The values
are in Hounsfield units. To determine the thresholds for the intensity range, plot a histogram of the
voxel intensity values. Set the x- and y-limits of the histogram plot based on the minimum and
maximum values. The histogram has two large peaks. The first peak corresponds to background
pixels outside the body of the patient and air in the lungs. The second peak corresponds to soft tissue
such as the heart and stomach.

figure
histogram(V)
xlim([min(V,[],"all") max(V,[],"all")])
ylim([0 2e6])
xlabel("Intensity [Hounsfield Units]")

6 Medical Image Segmentation

6-18

ylabel("Number of Voxels")
xline([-1024 500],"red",LineWidth=1)

To limit the intensities to the region containing the majority of the tissue in the region of interest,
select the thresholds for the intensity range as –1024 and 500.

th = [-1024 500];

Apply the preprocessLungCT helper function to further preprocess the test image volume. The
helper function is attached to this example as a supporting file. The preprocessLungCT function
performs these steps:

1 Resize each 2-D slice along the transverse dimension to the target size, imSize. Decreasing the
number of voxels can improve prediction speed. Set the target size to 256-by-256 voxels.

2 Crop the voxel intensities to the range specified by the thresholds in th.
3 Normalize the updated voxel intensities to the range [0, 1].

imSize = [256 256];
volInp = preprocessLungCT(volAligned,imSize,th);

 Segment Lungs from CT Scan Using Pretrained Neural Network

6-19

Segment Test Data and Postprocess Predicted Labels

Segment the test CT volume by using the lungSeg helper function. The helper function is attached to
this example as a supporting file. The lungSeg function predicts the segmentation mask by
performing inference on the pretrained network and postprocesses the network output to obtain the
segmentation mask.

To decrease the required computational time, the lungSeg function performs inference on the slices
of a volume in batches. Specify the batch size as eight slices using the batchSize name-value
argument of lungSeg. Increasing the batch size increases the speed of inference, but requires more
memory. If you run out of memory, try deceasing the batch size.

During postprocessing, the lungSeg helper function applies a mode filter to the network output to
smooth the segmentation labels using the modefilt function. You can set the size of the mode filter
by using the modeFilt name-value argument of lungSeg. The default filter size is [9 9 9].

labelOut = lungSeg(volInp,batchSize=8);

Display Predicted Segmentation Labels

Display the segmentation results by using the volshow function. Use the OverlayData argument to
plot the predicted segmentation labels. To focus on the label data, use the Alphamap agument to set
the opacity of the image volume to 0 and the OverlayAlphamap argument to set the opacity of the
labels to 0.9.

volshow(volInp,OverlayData=labelOut,...
 Alphamap=0,...
 OverlayAlphamap=0.9,...
 RenderingStyle="GradientOpacity");

6 Medical Image Segmentation

6-20

You can also display the preprocessed test volume as slice planes with the predicted segmentation
labels as an overlay by setting the RenderingStyle name-value argument to "SlicePlanes".
Specify the lung segmentation label using the OverlayData name-value argument.

volshow(volInp,OverlayData=labelOut,...
 OverlayAlphamap=0.9,...
 RenderingStyle="SlicePlanes");

Click and drag the mouse to rotate the volume. To scroll in a plane, pause on the slice you want to
investigate until it becomes highlighted, then click and drag. The left and right lung segmentation
masks are visible in the slices for which they are defined.

 Segment Lungs from CT Scan Using Pretrained Neural Network

6-21

References

[1] Hofmanninger, Johannes, Forian Prayer, Jeanny Pan, Sebastian Röhrich, Helmut Prosch, and
Georg Langs. “Automatic Lung Segmentation in Routine Imaging Is Primarily a Data Diversity
Problem, Not a Methodology Problem.” European Radiology Experimental 4, no. 1 (December 2020):
50. https://doi.org/10.1186/s41747-020-00173-2.

[2] GitHub. “Automated Lung Segmentation in CT under Presence of Severe Pathologies.” Accessed
July 21, 2022. https://github.com/JoHof/lungmask.

6 Medical Image Segmentation

6-22

https://github.com/JoHof/lungmask

[3] Medical Segmentation Decathlon. "Lung." Tasks. Accessed May 10, 2018. http://
medicaldecathlon.com. The Medical Segmentation Decathlon data set is provided under the CC-BY-SA
4.0 license. All warranties and representations are disclaimed. See the license for details.

See Also
importONNXFunction | modefilt | volshow

Related Examples
• “Segment Lungs from 3-D Chest Scan”
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 6-24

 Segment Lungs from CT Scan Using Pretrained Neural Network

6-23

http://medicaldecathlon.com
http://medicaldecathlon.com

Brain MRI Segmentation Using Pretrained 3-D U-Net Network

This example shows how to segment brain MRI using a deep neural network.

Segmentation of brain scans enables the visualization of individual brain structures. Brain
segmentation is also commonly used for quantitative volumetric and shape analyses to characterize
healthy and diseased populations. Manual segmentation by clinical experts is considered the highest
standard in segmentation. However, the process is extremely time-consuming and not practical for
labeling large data sets. Additionally, labeling requires expertise in neuroanatomy and is prone to
errors and limitations in interrater and intrarater reproducibility. Trained segmentation algorithms,
such as convolutional neural networks, have the potential to automate the labeling of large clinical
data sets.

In this example, you use the pretrained SynthSeg neural network [1 on page 6-31], a 3-D U-Net for
brain MRI segmentation. SynthSeg can be used to segment brain scans of any contrast and resolution
without retraining or fine-tuning. SynthSeg is also robust to a wide array of subject populations, from
young and healthy to aging and diseased subjects, and a wide array of scan conditions, such as white
matter lesions, with or without preprocessing, including bias field corruption, skull stripping,
intensity normalization, and template registration.

Download Brain MRI and Label Data

This example uses a subset of the CANDI data set [2 on page 6-31] [3 on page 6-31]. The subset
consists of a brain MRI volume and the corresponding ground truth label volume for one patient.
Both files are in the NIfTI file format. The total size of the data files is ~32 MB.

Create a folder in which to store the data set. In this example, a folder named brainSegData
created within the tempdir directory has been used as dataDir.

dataDir = fullfile(tempdir,"brainSegData");
if ~exist(dataDir,"dir")
 mkdir(dataDir);
end

To download the data, go to the UMass Medical CANDI website. Click the Download buttons next to
"Segmentation File (16.0 MB)" and "Anatomical Scan (16.0 MB)" to download the ground truth

6 Medical Image Segmentation

6-24

https://escholarship.umassmed.edu/cs_schizbull08/1/

label and MRI scan file, respectively. Save the anatomical scan in the folder specified in dataDir.
Save the segmentation file in a folder named groundTruth created within the folder specified in
dataDir.

Load Pretrained Network

This example uses a pretrained TensorFlow-Keras convolutional neural network. Download the
pretrained network from the MathWorks® website by using the helper function
downloadTrainedNetwork. The helper function is attached to this example as a supporting file. The
size of the pretrained network is approximately 51 MB.

trainedBrainCANDINetwork_url = "https://www.mathworks.com/supportfiles/image/data/trainedBrainSynthSegNetwork.h5";
downloadTrainedNetwork(trainedBrainCANDINetwork_url,dataDir);

Load Test Data

Read the metadata from the brain MRI volume by using the niftiinfo function. Read the brain MRI
volume by using the niftiread function.

imFile = fullfile(dataDir,"anat.nii");
metaData = niftiinfo(imFile);
X = niftiread(metaData);

In this example, you segment the brain into 32 classes corresponding to anatomical structures. Read
the names and numeric identifiers for each class label by using the
getBrainCANDISegmentationLabels helper function. The helper function is attached to this
example as a supporting file.

labelDirs = fullfile(dataDir,"groundTruth");
[classNames,labelIDs] = getBrainCANDISegmentationLabels;

Preprocess Test Data

Preprocess the MRI volume by using the preProcessBrainCANDIData helper function. The helper
function is attached to this example as a supporting file. The helper function performs these steps:

• Resampling — If resample is true, resample the data to the isotropic voxel size 1-by-1-by-1 mm.
By default, resample is false and the function does not perform resampling. To test the
pretrained network on images with a different voxel size, set resample to true if the input is not
isotropic.

• Alignment — Rotate the volume to a standardized RAS orientation.
• Cropping — Crop the volume to a maximum size of 192 voxels in each dimension.
• Normalization — Normalize the intensity values of the volume to values in the range [0, 1], which

improves the contrast.

resample = false;
cropSize = 192;
[X1,cropIdx,imSize] = preProcessBrainCANDIData(X,metaData,cropSize,resample);
inputSize = size(X1);

Convert the preprocessed MRI volume into a formatted deep learning array with the SSSCB (spatial,
spatial, spatial, channel, batch) format by using dlarray (Deep Learning Toolbox).

X2 = dlarray(X1,"SSSCB");

 Brain MRI Segmentation Using Pretrained 3-D U-Net Network

6-25

Define Network Architecture

Import the network layers from the downloaded model file of the pretrained network using the
importKerasLayers (Deep Learning Toolbox) function. The importKerasLayers function
requires the Deep Learning Toolbox™ Converter for TensorFlow Models support package. If this
support package is not installed, then importKerasLayers provides a download link. Specify
ImportWeights as true to import the layers using the weights from the same HDF5 file. The
function returns a layerGraph (Deep Learning Toolbox) object.

The Keras network contains some layers that the Deep Learning Toolbox™ does not support. The
importKerasLayers function displays a warning and replaces the unsupported layers with
placeholder layers.

modelFile = fullfile(dataDir,"trainedBrainSynthSegNetwork.h5");
lgraph = importKerasLayers(modelFile,ImportWeights=true,ImageInputSize=inputSize);

Warning: Imported layers have no output layer because the model contains no loss information. The layers will not be trainable until an output layer is added. Either add an output layer to the imported layers, or specify the output layer type using 'OutputLayerType' in the call to importKerasLayers.

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

To replace the placeholder layers in the imported network, first identify the names of the layers to
replace. Find the placeholder layers using findPlaceholderLayers (Deep Learning Toolbox).

placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers =
 PlaceholderLayer with properties:

 Name: 'unet_prediction'
 KerasConfiguration: [1×1 struct]
 Weights: []

 Learnable Parameters
 No properties.

 State Parameters
 No properties.

 Show all properties

Define existing layers with the same configurations as the imported Keras layers.

sf = softmaxLayer;

Replace the placeholder layers with existing layers using replaceLayer (Deep Learning Toolbox).

lgraph = replaceLayer(lgraph,"unet_prediction",sf);

Convert the network to a dlnetwork (Deep Learning Toolbox) object.

net = dlnetwork(lgraph);

Display the updated layer graph information.

layerGraph(net)

ans =
 LayerGraph with properties:

6 Medical Image Segmentation

6-26

 Layers: [60×1 nnet.cnn.layer.Layer]
 Connections: [63×2 table]
 InputNames: {'unet_input'}
 OutputNames: {1×0 cell}

Predict Using Test Data

Predict Network Output

Predict the segmentation output for the preprocessed MRI volume. The segmentation output
predictIm contains 32 channels corresponding to the segmentation label classes, such as
"background", "leftCerebralCortex", "rightThalamus". The predictIm output assigns
confidence scores to each voxel for every class. The confidence scores reflect the likelihood of the
voxel being part of the corresponding class. This prediction is different from the final semantic
segmentation output, which assigns each voxel to exactly one class.

predictIm = predict(net,X2);

Test Time Augmentation

This example uses test time augmentation to improve segmentation accuracy. In general,
augmentation applies random transformations to an image to increase the variability of a data set.
You can use augmentation before network training to increase the size of the training data set. Test
time augmentation applies random transformations to test images to create multiple versions of the
test image. You can then pass each version of the test image to the network for prediction. The
network calculates the overall segmentation result as the average prediction for all versions of the
test image. Test time augmentation improves segmentation accuracy by averaging out random errors
in the individual network predictions.

By default, this example flips the MRI volume in the left-right direction, resulting in a flipped volume
flippedData. The network output for the flipped volume is flipPredictIm. Set flipVal to
false to skip the test time augmentation and speed up prediction.

flipVal = ;
if flipVal
 flippedData = fliplr(X1);
 flippedData = flip(flippedData,2);
 flippedData = flip(flippedData,1);
 flippedData = dlarray(flippedData,"SSSCB");
 flipPredictIm = predict(net,flippedData);
else
 flipPredictIm = [];
end

Postprocess Segmentation Prediction

To get the final segmentation maps, postprocess the network output by using the
postProcessBrainCANDIData helper function. The helper function is attached to this example as a
supporting file. The postProcessBrainCANDIData function performs these steps:

• Smoothing — Apply a 3-D Gaussian smoothing filter to reduce noise in the predicted segmentation
masks.

• Morphological Filtering — Keep only the largest connected component of predicted segmentation
masks to remove additional noise.

 Brain MRI Segmentation Using Pretrained 3-D U-Net Network

6-27

• Segmentation — Assign each voxel to the label class with the greatest confidence score for that
voxel.

• Resizing — Resize the segmentation map to the original input volume size. Resizing the label
image allows you to visualize the labels as an overlay on the grayscale MRI volume.

• Alignment — Rotate the segmentation map back to the orientation of the original input MRI
volume.

The final segmentation result, predictedSegMaps, is a 3-D categorical array the same size as the
original input volume. Each element corresponds to one voxel and has one categorical label.

predictedSegMaps = postProcessBrainCANDIData(predictIm,flipPredictIm,imSize,...
 cropIdx,metaData,classNames,labelIDs);

Overlay a slice from the predicted segmentation map on a corresponding slice from the input volume
using the labeloverlay function. Include all the brain structure labels except the background
label.

B = labeloverlay(rescale(X(:,:,80)),predictedSegMaps(:,:,80),"IncludedLabels",2:32);
figure
montage({rescale(X(:,:,80)), B})

Quantify Segmentation Accuracy

Measure the segmentation accuracy by comparing the predicted segmentation labels with the ground
truth labels drawn by clinical experts.

Create a pixelLabelDatastore (Computer Vision Toolbox) to store the labels. Because the NIfTI
file format is a nonstandard image format, you must use a NIfTI file reader to read the pixel label
data. You can use the helper NIfTI file reader, niftiReader, defined at the bottom of this example.

pxds = pixelLabelDatastore(labelDirs,classNames,labelIDs,FileExtensions=".nii",...
 ReadFcn=@niftiReader);

6 Medical Image Segmentation

6-28

Read the ground truth labels from the pixel label datastore.

groundTruthLabel = read(pxds);
groundTruthLabel = groundTruthLabel{1};

Measure the segmentation accuracy using the dice function. This function computes the Dice index
between the predicted and ground truth segmentations.

diceResult = zeros(length(classNames),1);
for j = 1:length(classNames)
 diceResult(j)= dice(groundTruthLabel==classNames(j),...
 predictedSegMaps==classNames(j));
end

Calculate the average Dice index across all labels for the MRI volume.

meanDiceScore = mean(diceResult);
disp("Average Dice score across all labels = " +num2str(meanDiceScore))

Average Dice score across all labels = 0.80793

This figure shows a boxplot that visualizes statistics about the Dice indices across all the label
classes. The red lines in the plot show the median Dice index. The upper and lower bounds of the blue
box indicate the 25th and 75th percentiles, respectively. Black whiskers extend to the most extreme
data points that are not outliers.

 Brain MRI Segmentation Using Pretrained 3-D U-Net Network

6-29

If you have a Statistics and Machine Learning Toolbox™ license, then you can use the boxplot
(Statistics and Machine Learning Toolbox) function to visualize statistics about the Dice indices. To
create a boxplot, set createBoxplot to true.

createBoxplot = ;
if createBoxplot
 figure
 boxplot(diceResult)
 title("Dice Accuracy")
 xticklabels("All Label Classes")
 ylabel("Dice Coefficient")
end

Supporting Functions

The niftiReader helper function is a custom read function for reading a NIfTI file in a datastore.

function data = niftiReader(filename)
% Read nifti file and convert to data type uint8.

6 Medical Image Segmentation

6-30

% Copyright 2022 The MathWorks, Inc.

 data = niftiread(filename);
 data = uint8(data);
end

References

[1] Billot, Benjamin, Douglas N. Greve, Oula Puonti, Axel Thielscher, Koen Van Leemput, Bruce Fischl,
Adrian V. Dalca, and Juan Eugenio Iglesias. “SynthSeg: Domain Randomisation for Segmentation of
Brain Scans of Any Contrast and Resolution.” ArXiv:2107.09559 [Cs, Eess], December 21, 2021.
http://arxiv.org/abs/2107.09559.

[2] Child and Adolescent NeuroDevelopment Initiative, "1. HC_001" (2008). CANDI Neuroimaging
Data. Dataset 1. https://escholarship.umassmed.edu/cs_schizbull08/1.

[3] Frazier, J. A., S. M. Hodge, J. L. Breeze, A. J. Giuliano, J. E. Terry, C. M. Moore, D. N. Kennedy, et al.
“Diagnostic and Sex Effects on Limbic Volumes in Early-Onset Bipolar Disorder and Schizophrenia.”
Schizophrenia Bulletin 34, no. 1 (October 27, 2007): 37–46. https://doi.org/10.1093/schbul/sbm120.

See Also
niftiread | importKerasLayers | findPlaceholderLayers | pixelLabelDatastore | dice |
boxplot

Related Examples
• “Segment Lungs from CT Scan Using Pretrained Neural Network” on page 6-14
• “Breast Tumor Segmentation from Ultrasound Using Deep Learning” on page 6-32
• “3-D Brain Tumor Segmentation Using Deep Learning”

 Brain MRI Segmentation Using Pretrained 3-D U-Net Network

6-31

http://arxiv.org/abs/2107.09559
https://escholarship.umassmed.edu/cs_schizbull08/1
https://doi.org/10.1093/schbul/sbm120

Breast Tumor Segmentation from Ultrasound Using Deep
Learning

This example shows how to perform semantic segmentation of breast tumors from 2-D ultrasound
images using a deep neural network.

Semantic segmentation involves assigning a class to each pixel in a 2-D image. In this example, you
perform breast tumor segmentation using the DeepLab v3+ architecture. A common challenge of
medical image segmentation is class imbalance. In segmentation, class imbalance means the size of
the region of interest, such as a tumor, is small relative to the image background, resulting in many
more pixels in the background class. This example addresses class imbalance by using a custom
Tversky loss [1 on page 6-39]. The Tversky loss is an asymmetric similarity measure that is a
generalization of the Dice index and the Jaccard index.

Load Pretrained Network

Create a folder in which to store the pretrained network and image data set. In this example, a folder
named BreastSegmentation created within the tempdir directory has been used as dataDir.
Download the pretrained DeepLab v3+ network and test image by using the
downloadTrainedNetwork helper function. The helper function is attached to this example as a
supporting file. You can use the pretrained network to run the example without waiting for training to
complete.

dataDir = fullfile(tempdir,"BreastSegmentation");
pretrainedNetwork_url = "https://www.mathworks.com/supportfiles/image/data/breastTumorDeepLabV3.tar.gz";
downloadTrainedNetwork(pretrainedNetwork_url,dataDir);

Unzip the TAR GZ file completely. Load the pretrained network.

gunzip(fullfile(dataDir,"breastTumorDeepLabV3.tar.gz"),dataDir);
untar(fullfile(dataDir,"breastTumorDeepLabV3.tar"),dataDir);
exampleDir = fullfile(dataDir,"breastTumorDeepLabV3");
pretrained = load(fullfile(exampleDir,"breast_seg_deepLabV3.mat"));
trainedNet = pretrained.trainedNet;

Read the test ultrasound image and resize the image to the input size of the pretrained network.

imTest = imread(fullfile(exampleDir,"breastUltrasoundImg.png"));
imSize = [256 256];
imTest = imresize(imTest,imSize);

Predict the tumor segmentation mask for the test image.

segmentedImg = semanticseg(imTest,trainedNet);

Display the test image and the test image with the predicted tumor label overlay as a montage.

overlayImg = labeloverlay(imTest,segmentedImg,Transparency=0.7,IncludedLabels="tumor", ...
 Colormap="hsv");
imshowpair(imTest,overlayImg,"montage");

6 Medical Image Segmentation

6-32

Download Data Set

This example uses the Breast Ultrasound Images (BUSI) data set [2 on page 6-39]. The BUSI data
set contains 2-D ultrasound images stored in the PNG file format. The total size of the data set is 197
MB. The data set contains 133 normal scans, 487 scans with benign tumors, and 210 scans with
malignant tumors. This example uses images from the tumor groups only. Each ultrasound image has
a corresponding tumor mask image. The tumor mask labels have been reviewed by clinical
radiologists [2 on page 6-39].

Go to the website of Prof. Aly Fahmy and click "Breast Ultrasound Images Dataset (Dataset
BUSI)" and download the BUSI data in the folder specified by dataDir.

Load Data

If the downloaded data set is zipped, unzip it in the folder specified by the dataDir variable. After
you unzip the data set, the folder specified by dataDir contains a folder named
Dataset_BUSI_with_GT.

if isfile(fullfile(dataDir,"Dataset_BUSI.zip"))
 unzip(fullfile(dataDir,"Dataset_BUSI.zip"),dataDir);
end

Create an imageDatastore object to read and manage the ultrasound image data. Label each image
as normal, benign, or malignant according to the name of its folder.

imageDir = fullfile(dataDir,"Dataset_BUSI_with_GT");
imds = imageDatastore(imageDir,IncludeSubfolders=true,LabelSource="foldernames");

Remove files whose names contain "mask" to remove label images from the datastore. The image
datastore now contains only the grayscale ultrasound images.

imds = subset(imds,find(~contains(imds.Files,"mask")));

 Breast Tumor Segmentation from Ultrasound Using Deep Learning

6-33

https://scholar.cu.edu.eg/?q=afahmy/pages/dataset

Create a pixelLabelDatastore (Computer Vision Toolbox) object to store the labels.

classNames = ["tumor","background"];
labelIDs = [1 0];
numClasses = numel(classNames);
pxds = pixelLabelDatastore(imageDir,classNames,labelIDs,IncludeSubfolders=true);

Include only the subset of files whose names contain "_mask.png" in the datastore. The pixel label
datastore now contains only the tumor mask images.

pxds = subset(pxds,contains(pxds.Files,"_mask.png"));

Preview one image with a tumor mask overlay.

testImage = preview(imds);
mask = preview(pxds);
B = labeloverlay(testImage,mask,Transparency=0.7,IncludedLabels="tumor", ...
 Colormap="hsv");
imshow(B);
title("Labeled Test Ultrasound Image")

6 Medical Image Segmentation

6-34

Combine the image datastore and the pixel label datastore to create a CombinedDatastore object.

dsCombined = combine(imds,pxds);

Prepare Data for Training

Partition Data into Training, Validation, and Test Sets

Split the combined datastore into data sets for training, validation, and testing. Allocate 80% of the
data for training, 10% for validation, and the remaining 10% for testing. Determine the indices to
include in each set by using the splitlabels (Computer Vision Toolbox) function. To exclude
images in the normal class without tumor images, use the image datastore labels as input and set
the Exclude name-value argument to "normal".

idxSet = splitlabels(imds.Labels,[0.8,0.1],"randomized",Exclude="normal");
dsTrain = subset(dsCombined,idxSet{1});
dsVal = subset(dsCombined,idxSet{2});
dsTest = subset(dsCombined,idxSet{3});

Augment Training and Validation Data

Augment the training and validation data by using the transform function with custom
preprocessing operations specified by the transformBreastTumorImageAndLabels helper
function. The helper function is attached to the example as a supporting file. The
transformBreastTumorImageAndLabels function performs these operations:

1 Convert the ultrasound images from RGB to grayscale.
2 Augment the intensity of the grayscale images by using the jitterIntensity function.
3 Resize the images to 256-by-256 pixels.

tdsTrain = transform(dsTrain,@transformBreastTumorImageAndLabels,IncludeInfo=true);
tdsVal = transform(dsVal,@transformBreastTumorImageAndLabels,IncludeInfo=true);

Define Network Architecture

This example uses the DeepLab v3+ network. DeepLab v3+ consists of a series of convolution layers
with a skip connection, one maxpool layer, and one averagepool layer. The network also has a batch
normalization layer before each ReLU layer.

Create a DeepLab v3+ network based on ResNet-50 by using the using deeplabv3plusLayers
(Computer Vision Toolbox) function. Setting the base network as ResNet-50 requires the Deep
Learning Toolbox™ Model for ResNet-50 Network support package. If this support package is not
installed, then the function provides a download link.

Define the input size of the network as 256-by-256-by-3. Specify the number of classes as two for
background and tumor.

imageSize = [256 256 3];
lgraph = deeplabv3plusLayers(imageSize,numClasses,"resnet50");

Because the preprocessed ultrasound images are grayscale, replace the original input layer with a
256-by-256 input layer.

newInputLayer = imageInputLayer(imageSize(1:2),Name="newInputLayer");
lgraph = replaceLayer(lgraph,lgraph.Layers(1).Name,newInputLayer);

 Breast Tumor Segmentation from Ultrasound Using Deep Learning

6-35

Replace the first 2-D convolution layer with a new 2-D convolution layer to match the size of the new
input layer.

newConvLayer = convolution2dLayer([7 7],64,Stride=2,Padding=[3 3 3 3],Name="newConv1");
lgraph = replaceLayer(lgraph,lgraph.Layers(2).Name,newConvLayer);

To better segment smaller tumor regions and reduce the influence of larger background regions, use
a custom Tversky pixel classification layer. For more details about using a custom Tversky layer, see
“Define Custom Pixel Classification Layer with Tversky Loss” (Deep Learning Toolbox). Replace the
pixel classification layer with the Tversky pixel classification layer. The alpha and beta weighting
factors control the contribution of false positives and false negatives, respectively, to the loss
function. The alpha and beta values used in this example were selected using trial and error for the
target data set. Generally, specifying the beta value greater than the alpha value is useful for
training images with small objects and large background regions.

alpha = 0.01;
beta = 0.99;
pxLayer = tverskyPixelClassificationLayer("tverskyLoss",alpha,beta);
lgraph = replaceLayer(lgraph,"classification",pxLayer);

Alternatively, you can modify the DeepLab v3+ network by using the Deep Network Designer (Deep
Learning Toolbox) from Deep Learning Toolbox.

Use the Analyze option in the Deep Network Designer (Deep Learning Toolbox) to analyze the
DeepLab v3+ network.

deepNetworkDesigner(lgraph);

Specify Training Options

Train the network using the adam optimization solver. Specify the hyperparameter settings using the
trainingOptions (Deep Learning Toolbox) function. Set the learning rate to 1e-3 over the span of
training. You can experiment with the mini-batch size based on your GPU memory. Batch
normalization layers are less effective for smaller values of the mini-batch size. Tune the initial
learning rate based on the mini-batch size.

options = trainingOptions("adam", ...
 ExecutionEnvironment="gpu", ...
 InitialLearnRate=1e-3, ...
 ValidationData=tdsVal, ...
 MaxEpochs=300, ...
 MiniBatchSize=16, ...
 VerboseFrequency=20, ...
 Plots="training-progress");

Train Network

To train the network, set the doTraining variable to true. Train the model using the
trainNetwork (Deep Learning Toolbox) function.

Train on a GPU if one is available. Using a GPU requires a Parallel Computing Toolbox™ license and
CUDA®-enabled NVIDIA™ GPU. Training takes about four hours on a single-GPU system with
NVIDIA™ Titan Xp GPU and can take longer depending on your GPU hardware.

doTraining = ;
if doTraining

6 Medical Image Segmentation

6-36

 [trainedNet,info] = trainNetwork(tdsTrain,lgraph,options);
 modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
 save("breastTumorDeepLabv3-"+modelDateTime+".mat","trainedNet");
end

Predict Using New Data

Preprocess Test Data

Prepare the test data by using the transform function with custom preprocessing operations
specified by the transformBreastTumorImageResize helper function. This helper function is
attached to the example as a supporting file. The transformBreastTumorImageResize function
converts images from RGB to grayscale and resizes the images to 256-by-256 pixels.

tdsTest = transform(dsTest,@transformBreastTumorImageResize,IncludeInfo=true);

Segment Test Data

Use the trained network for semantic segmentation of the test data set.

pxdsResults = semanticseg(tdsTest,trainedNet,Verbose=true);

Running semantic segmentation network

* Processed 65 images.

Evaluate Segmentation Accuracy

Evaluate the network-predicted segmentation results against the ground truth pixel label tumor
masks.

metrics = evaluateSemanticSegmentation(pxdsResults,tdsTest,Verbose=true);

Evaluating semantic segmentation results
--
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 65 images.
* Finalizing... Done.
* Data set metrics:

 GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore
 ______________ ____________ _______ ___________ ___________

 0.93925 0.89078 0.73802 0.90067 0.54716

Measure the segmentation accuracy using the evaluateBreastTumorDiceAccuracy helper
function. This helper function computes the Dice index between the predicted and ground truth
segmentations using the dice function. The helper function is attached to the example as a
supporting file.

[diceTumor,diceBackground,numTestImgs] = evaluateBreastTumorDiceAccuracy(pxdsResults,tdsTest);

Calculate the average Dice index across the set of test images.

disp("Average Dice score of background across "+num2str(numTestImgs)+ ...
 " test images = "+num2str(mean(diceBackground)))

Average Dice score of background across 65 test images = 0.96338

 Breast Tumor Segmentation from Ultrasound Using Deep Learning

6-37

disp("Average Dice score of tumor across "+num2str(numTestImgs)+ ...
 " test images = "+num2str(mean(diceTumor)))

Average Dice score of tumor across 65 test images = 0.6867

disp("Median Dice score of tumor across "+num2str(numTestImgs)+ ...
 " test images = "+num2str(median(diceTumor)))

Median Dice score of tumor across 65 test images = 0.76217

This figure shows a boxplot that visualizes statistics about the Dice indices across the set of 65 test
samples. The red lines in the plot show the median Dice index for the classes. The upper and lower
bounds of the blue box indicate the 25th and 75th percentiles, respectively. Black whiskers extend to
the most extreme data points that are not outliers.

If you have a Statistics and Machine Learning Toolbox™ license, then you can use the boxplot
(Statistics and Machine Learning Toolbox) function to visualize statistics about the Dice indices
across all your test images. To create a boxplot, set createBoxplot to true.

createBoxplot = ;
if createBoxplot
 figure
 diceResult = [diceTumor diceBackground];
 boxplot(diceResult)
 title("Test Set Dice Accuracy")
 xticklabels(classNames)

6 Medical Image Segmentation

6-38

 ylabel("Dice Coefficient")
end

References

[1] Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. “Tversky Loss Function for
Image Segmentation Using 3D Fully Convolutional Deep Networks.” In Machine Learning in Medical
Imaging, edited by Qian Wang, Yinghuan Shi, Heung-Il Suk, and Kenji Suzuki, 10541:379–87. Cham:
Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-67389-9_44.

[2] Al-Dhabyani, Walid, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. “Dataset of Breast
Ultrasound Images.” Data in Brief 28 (February 2020): 104863. https://doi.org/10.1016/
j.dib.2019.104863.

See Also
imageDatastore | pixelLabelDatastore | subset | combine | transform |
deeplabv3plusLayers | semanticseg | evaluateSemanticSegmentation

Related Examples
• “Segment Lungs from CT Scan Using Pretrained Neural Network” on page 6-14
• “Brain MRI Segmentation Using Pretrained 3-D U-Net Network” on page 6-24
• “3-D Brain Tumor Segmentation Using Deep Learning”

More About
• “Datastores for Deep Learning” (Deep Learning Toolbox)
• “Define Custom Pixel Classification Layer with Tversky Loss” (Computer Vision Toolbox)

 Breast Tumor Segmentation from Ultrasound Using Deep Learning

6-39

https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.1016/j.dib.2019.104863
https://doi.org/10.1016/j.dib.2019.104863

	Getting Started
	Medical Imaging Toolbox Product Description
	Read, Process, and Write 3-D Medical Images
	Get Started with Medical Image Labeler
	Start New Labeling Session
	Load Image Data
	Create Label Definitions
	Label Image
	Export Labeling Results
	How Medical Image Labeler Manages Ground Truth Labels

	Medical Image Coordinate Systems
	Patient Coordinate System
	Intrinsic Coordinate System

	Introduction to Medical Imaging
	Common Medical Imaging Modalities
	Typical Workflow for Medical Image Analysis

	Import, Export, and Spatial Referencing
	Read, Process, and View Ultrasound Data

	Display and Volume Rendering
	Visualize 3-D Medical Image Data Using Medical Image Labeler
	Display 3-D Medical Image Data in Patient Coordinate System
	Display Labeled Medical Image Volume in Patient Coordinates
	Create STL Surface Model of Femur Bone for 3-D Printing

	Image Preprocessing and Augmentation
	Medical Image Preprocessing
	Background Removal
	Denoising
	Resampling
	Registration
	Intensity Normalization
	Preprocessing in Advanced Workflows

	Medical Image Registration
	Scenarios for Medical Image Registration
	Functions for Medical Image Registration

	Register Multimodal Medical Image Volumes with Spatial Referencing

	Medical Image Labeling
	Label 2-D Ultrasound Series Using Medical Image Labeler
	Label 3-D Medical Image Using Medical Image Labeler
	Collaborate on Multi-Labeler Medical Image Labeling Projects
	Create Label Definitions and Assign Data to Labelers (Project Manager)
	Label Data and Publish Labels for Review (Labeler)
	Inspect Labeled Images (Reviewer)
	Export Ground Truth Data and Send to Project Manager (Labeler)
	Collect, Merge, and Create Training Data (Project Manager)

	Medical Image Segmentation
	Create Datastores for Medical Image Semantic Segmentation
	Medical Image Ground Truth Data
	Datastores for Semantic Segmentation

	Convert Ultrasound Image Series into Training Data for 2-D Semantic Segmentation Network
	Create Training Data for 3-D Medical Image Semantic Segmentation
	Segment Lungs from CT Scan Using Pretrained Neural Network
	Brain MRI Segmentation Using Pretrained 3-D U-Net Network
	Breast Tumor Segmentation from Ultrasound Using Deep Learning

